MMAT5010 2223 Assignment 8

Q1.(a) To show M^{\perp} is closed, we need to show that for any sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset M^{\perp}$ such that $x_{n} \rightarrow x$ for some $x \in X$, we have $x \in M^{\perp}$. In fact, for any $y \in M$,

$$
(x, y)=\left(\lim _{n \rightarrow \infty} x_{n}, y\right)=\lim _{n \rightarrow \infty}\left(x_{n}, y\right)=0
$$

Hence $x \in M^{\perp}$. Therefore, M^{\perp} is closed.
(b) Firstly we show $(\bar{M})^{\perp} \subset M^{\perp}$. For any $x \in(\bar{M})^{\perp}$, any $y \in M \subset \bar{M}$, we have $(x, y)=0$. Hence $x \in M^{\perp}$. Therefore $(\bar{M})^{\perp} \subset M^{\perp}$.

Now we show $M^{\perp} \subset(\bar{M})^{\perp}$. We need to show for any $x \in M^{\perp}$, any $y \in \bar{M}$, we have $(x, y)=0$. In fact, since $y \in \bar{M}$, there exists a sequence $\left\{y_{n}\right\}_{n=1}^{\infty} \subset M$ such that $y_{n} \rightarrow y$. Then

$$
(x, y)=\left(x, \lim _{n \rightarrow \infty} y_{n}\right)=\lim _{n \rightarrow \infty}\left(x, y_{n}\right)=0
$$

Hence $x \in(\bar{M})^{\perp}$. Therefore, $M^{\perp} \subset(\bar{M})^{\perp}$. In conclusion, $(\bar{M})^{\perp}=M^{\perp}$.
Q2. For any $x, y \in H_{1}$, we have $x=\sum_{n=1}^{\infty}\left(x, e_{n}\right) e_{n}, y=\sum_{n=1}^{\infty}\left(y, e_{n}\right) e_{n}$.
Then

$$
(x, y)=\left(\sum_{n=1}^{\infty}\left(x, e_{n}\right) e_{n}, \sum_{n=1}^{\infty}\left(y, e_{n}\right) e_{n}\right)=\sum_{n=1}^{\infty}\left(x, e_{n}\right) \overline{\left(y, e_{n}\right)}
$$

And

$$
U x=U\left(\sum_{n=1}^{\infty}\left(x, e_{n}\right) e_{n}\right)=\sum_{n=1}^{\infty}\left(x, e_{n}\right) U e_{n}=\sum_{n=1}^{\infty}\left(x, e_{n}\right) f_{n}
$$

Similarly, $U y=\sum_{n=1}^{\infty}\left(y, e_{n}\right) f_{n}$. Therefore,

$$
(U x, U y)=\left(\sum_{n=1}^{\infty}\left(x, e_{n}\right) f_{n}, \sum_{n=1}^{\infty}\left(y, e_{n}\right) f_{n}\right)=\sum_{n=1}^{\infty}\left(x, e_{n}\right) \overline{\left(y, e_{n}\right)}=(x, y)
$$

