MMAT5010 2223 Assignment 8

Q1.(a) To show M^{\perp} is closed, we need to show that for any sequence $\{x_n\}_{n=1}^{\infty} \subset M^{\perp}$ such that $x_n \to x$ for some $x \in X$, we have $x \in M^{\perp}$. In fact, for any $y \in M$,

$$(x,y) = (\lim_{n \to \infty} x_n, y) = \lim_{n \to \infty} (x_n, y) = 0.$$

Hence $x \in M^{\perp}$. Therefore, M^{\perp} is closed.

(b) Firstly we show $(\overline{M})^{\perp} \subset M^{\perp}$. For any $x \in (\overline{M})^{\perp}$, any $y \in M \subset \overline{M}$, we have (x, y) = 0. Hence $x \in M^{\perp}$. Therefore $(\overline{M})^{\perp} \subset M^{\perp}$.

Now we show $M^{\perp} \subset (\overline{M})^{\perp}$. We need to show for any $x \in M^{\perp}$, any $y \in \overline{M}$, we have (x, y) = 0. In fact, since $y \in \overline{M}$, there exists a sequence $\{y_n\}_{n=1}^{\infty} \subset M$ such that $y_n \to y$. Then

$$(x,y) = (x, \lim_{n \to \infty} y_n) = \lim_{n \to \infty} (x, y_n) = 0.$$

Hence $x \in (\overline{M})^{\perp}$. Therefore, $M^{\perp} \subset (\overline{M})^{\perp}$. In conclusion, $(\overline{M})^{\perp} = M^{\perp}$.

Q2. For any $x, y \in H_1$, we have $x = \sum_{n=1}^{\infty} (x, e_n) e_n$, $y = \sum_{n=1}^{\infty} (y, e_n) e_n$. Then

$$(x,y) = (\sum_{n=1}^{\infty} (x,e_n)e_n, \sum_{n=1}^{\infty} (y,e_n)e_n) = \sum_{n=1}^{\infty} (x,e_n)\overline{(y,e_n)}.$$

And

$$Ux = U(\sum_{n=1}^{\infty} (x, e_n)e_n) = \sum_{n=1}^{\infty} (x, e_n)Ue_n = \sum_{n=1}^{\infty} (x, e_n)f_n.$$

Similarly, $Uy = \sum_{n=1}^{\infty} (y, e_n) f_n$. Therefore,

$$(Ux, Uy) = (\sum_{n=1}^{\infty} (x, e_n) f_n, \sum_{n=1}^{\infty} (y, e_n) f_n) = \sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)} = (x, y).$$