MMAT5010 2223 Assignment 6

Q1. For any $(x, y) \in X \times Y$, $||\pi(x, y)|| = ||x|| \le \max(||x||, ||y||) = q(x, y)$. Hence π is bounded. We claim that $||\pi|| = 1$. In fact, we take $x_0 \in X$ such that $||x_0|| = 1$ and $y_0 = 0_Y$, then $q(x_0, y_0) = 1$ and $||\pi(x_0, y_0)|| = 1$. Therefore, $||\pi|| = 1$.

Q2. (i)We claim that *T* is unbounded. In fact, we take $e_k = (0, 0, ..., 0, 1, 0, ...)(k$ th entry is 1, others are 0), then $e_k \in X$ and $||e_k||_2 = 1$. Notice that $||Te_k||_2 = k$ for each k = 1, 2, ... Hence *T* is unbounded. (ii) $T^{-1}y(n) = \frac{1}{n}y(n)$ for $y \in \ell_2, n = 1, 2, ...$ Then

$$||T^{-1}y||_2 = \sqrt{\sum \frac{1}{n^2} |y(n)|^2} \le \sqrt{\sum |y(n)|^2} = ||y||_2.$$

Hence T^{-1} is bounded. We claim that $||T^{-1}|| = 1$. In fact, we take $y_0 = (1, 0, 0, ...)$ (the first entry is 1, others are 0). Then $||y_0||_2 = 1$ and $||T^{-1}y_0||_2 = 1$. Therefore, $||T^{-1}|| = 1$.