MMAT5010 2223 Assignment 5

Q1. (i)Let $T: (X, \|\cdot\|_1) \to (X, \|\cdot\|_\infty)$ be defined by $Tf(x) = \int_a^x f(t) dt$. Then

$$||Tf||_{\infty} = \sup_{x \in [a,b]} |Tf(x)| \le \sup_{x \in [a,b]} \int_{a}^{x} |f(t)| \, dt \le \int_{a}^{b} |f(t)| \, dt = ||f||_{1}$$

Therefore $||T|| \leq 1$. Furthermore, if we let $f: [a, b] \to \mathbb{R}$ to be $f(x) \equiv \frac{1}{b-a}$, then $||f||_1 = 1$ and

$$Tf(x) = \frac{x-a}{b-a}.$$

We have $||Tf||_{\infty} = 1$. Hence ||T|| = 1.

(ii)Let $T: (X, \|\cdot\|_1) \to (X, \|\cdot\|_1)$ be defined by $Tf(x) = \int_a^x f(t) dt$. Then

$$||Tf||_1 = \int_a^b |Tf(t)| \, dt \le \int_a^b \int_a^t |f(s)| \, ds \, dt \le \int_a^b \int_a^b |f(s)| \, ds \, dt = (b-a) ||f||_1.$$

Therefore $||T|| \leq b - a$. We claim that ||T|| = b - a by finding a sequence (f_n) in X with $||f_n||_1 = 1$ and $||Tf_n||_1 \to b - a$. Our f_n is defined by the followings:

- $f_n = 0$ on $[a + \frac{1}{n}, b]$
- $f_n(a) = 2n$
- f_n is a straight line on $[a, a + \frac{1}{n}]$.

It is easy to check that $||f_n||_1 = 1$ and $Tf_n(x) = 1$ for $x \in [a + \frac{1}{n}, b]$. Thus $||Tf_n||_1 \ge b - (a + \frac{1}{n})$ for every n. Hence f_n is the desired sequence and ||T|| = b - a.

Q2. Let $x, y \in X$ such that ||x - y|| > c > 0. By Hahn Banach Theorem, there exists $f \in X^*$ such that f(x - y) = ||x - y|| > c. Hence f(x) = f(x - y) + f(y) > c + f(y).

Q3. Firstly, we show that T is isometric. $||Tz(w)|| = ||\sum_{k=1}^{n} z_k w_k|| \le ||z|| ||w||$. Hence, $||Tz|| \le ||z||$. And by taking $w = \overline{z}$, we have $||Tz(w)|| = ||z||^2$. Hence ||Tz|| = ||z||. Therefore, T is isometric. Since T is isometric, T is injective. Now we show that T is surjective. Let $(e_i)_{i=1}^m$ be the standard base for \mathbb{C}^m , i.e. $e_i = (0, 0, ..., 1, 0, ..., 0)(i$ -th entry is 1, others are 0.) Let e_i^* be defined as $e_i^*(e_j) = \delta_{ij}$, then e_i^* is a base for $(\mathbb{C}^m)^*$. Then for any $\phi \in (\mathbb{C}^m)^*$, there exists $(\alpha_i)_{i=1}^m \subset \mathbb{C}$ such that $\phi = \sum_{i=1}^m \alpha_i e_i^*$. So for any $w \in \mathbb{C}^m$, $\phi(w) = \sum_{i=1}^m \alpha_i w_i$. Hence $\phi = T\alpha$, where $\alpha = (\alpha_1, ..., \alpha_m)$. Therefore, T is surjective. Since T is isometric and bijective, T is also bicontinuous. Therefore, T is isometric isomorphic.