MMAT5010 2223 Assignment 5

Q1. (i)Let $T:\left(X,\|\cdot\|_{1}\right) \rightarrow\left(X,\|\cdot\|_{\infty}\right)$ be defined by $T f(x)=\int_{a}^{x} f(t) d t$. Then

$$
\|T f\|_{\infty}=\sup _{x \in[a, b]}|T f(x)| \leq \sup _{x \in[a, b]} \int_{a}^{x}|f(t)| d t \leq \int_{a}^{b}|f(t)| d t=\|f\|_{1} .
$$

Therefore $\|T\| \leq 1$. Furthermore, if we let $f:[a, b] \rightarrow \mathbb{R}$ to be $f(x) \equiv \frac{1}{b-a}$, then $\|f\|_{1}=1$ and

$$
T f(x)=\frac{x-a}{b-a} .
$$

We have $\|T f\|_{\infty}=1$. Hence $\|T\|=1$.
(ii)Let $T:\left(X,\|\cdot\|_{1}\right) \rightarrow\left(X,\|\cdot\|_{1}\right)$ be defined by $T f(x)=\int_{a}^{x} f(t) d t$. Then
$\|T f\|_{1}=\int_{a}^{b}|T f(t)| d t \leq \int_{a}^{b} \int_{a}^{t}|f(s)| d s d t \leq \int_{a}^{b} \int_{a}^{b}|f(s)| d s d t=(b-a)\|f\|_{1}$.
Therefore $\|T\| \leq b-a$. We claim that $\|T\|=b-a$ by finding a sequence $\left(f_{n}\right)$ in X with $\left\|f_{n}\right\|_{1}=1$ and $\left\|T f_{n}\right\|_{1} \rightarrow b-a$. Our f_{n} is defined by the followings:

- $f_{n}=0$ on $\left[a+\frac{1}{n}, b\right]$
- $f_{n}(a)=2 n$
- f_{n} is a straight line on $\left[a, a+\frac{1}{n}\right]$.

It is easy to check that $\left\|f_{n}\right\|_{1}=1$ and $T f_{n}(x)=1$ for $x \in\left[a+\frac{1}{n}, b\right]$. Thus $\left\|T f_{n}\right\|_{1} \geq b-\left(a+\frac{1}{n}\right)$ for every n. Hence f_{n} is the desired sequence and $\|T\|=b-a$.

Q2. Let $x, y \in X$ such that $\|x-y\|>c>0$. By Hahn Banach Theorem, there exists $f \in X^{*}$ such that $f(x-y)=\|x-y\|>c$. Hence $f(x)=f(x-y)+f(y)>$ $c+f(y)$.

Q3. Firstly, we show that T is isometric. $\|T z(w)\|=\left\|\sum_{k=1}^{n} z_{k} w_{k}\right\| \leq\|z\|\|w\|$. Hence, $\|T z\| \leq\|z\|$. And by taking $w=\bar{z}$, we have $\|T z(w)\|=\|z\|^{2}$. Hence $\|T z\|=\|z\|$. Therefore, T is isometric. Since T is isometric, T is injective.

Now we show that T is surjective. Let $\left(e_{i}\right)_{i=1}^{m}$ be the standard base for \mathbb{C}^{m}, i.e. $e_{i}=(0,0, \ldots, 1,0, \ldots, 0)\left(i-\right.$ th entry is 1 , others are 0 .) Let e_{i}^{*} be defined as $e_{i}^{*}\left(e_{j}\right)=\delta_{i j}$, then e_{i}^{*} is a base for $\left(\mathbb{C}^{m}\right)^{*}$. Then for any $\phi \in\left(\mathbb{C}^{m}\right)^{*}$, there exists $\left(\alpha_{i}\right)_{i=1}^{m} \subset \mathbb{C}$ such that $\phi=\sum_{i=1}^{m} \alpha_{i} e_{i}^{*}$. So for any $w \in \mathbb{C}^{m}, \phi(w)=\sum_{i=1}^{m} \alpha_{i} w_{i}$. Hence $\phi=T \alpha$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$. Therefore, T is surjective. Since T is isometic and bijective, T is also bicontinuous. Therefore, T is isometric isomorphic.

