MMAT5010 2223 Assignment 4

Q1. For each $x \in \mathbb{R}^{n}$,

$$
\|x\|_{\infty}=\max _{1 \leq k \leq n}\left|x_{k}\right| \leq \sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}} \leq \sqrt{n} \max _{1 \leq k \leq n}\left|x_{k}\right|=\sqrt{n}\|x\|_{\infty}
$$

Therefore, the norms $\|\cdot\|_{2}$ and $\|\cdot\|_{\infty}$ are equivalent.
Q2. Recall that

$$
\|T\|=\sup \left\{\|T x\|: x \in \mathbb{R}^{2},\|x\|=1\right\}
$$

Note if $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, then $T x=\left(x_{1}+2 x_{2}, 3 x_{2}\right)$. Thus

$$
\|T x\|=\max \left(\left|x_{1}+2 x_{2}\right|,\left|3 x_{2}\right|\right) \leq \max \left(\left|x_{1}\right|+2\left|x_{2}\right|, 3\left|x_{2}\right|\right) \leq 3\|x\| .
$$

This shows $\|T\| \leq 3$. We guess that $\|T\|=3$, and to show it, we want to find $x \in \mathbb{R}^{2},\|x\|=1$ and $\|T x\|=3$. We may take $x=(0,1)$ or $(1,1)$.

Q3. To show T is discontinuous it needs to show that T is unbounded on the ball $B_{c_{00}}$. Let $e_{k}=(0,0, \ldots, 0,1,0, \ldots)(k$-th entry is 1 , others are 0$)$. Note that $e_{k} \in B_{c_{00}}$, and $T e_{k}=k e_{k},\left\|T e_{k}\right\|=k$. Hence $\|T\|$ cannot be bounded on $B_{c_{00}}$.

