MMAT5010 2223 Assignment 1

Q1. Clearly $q(x) \ge 0$ for any $x \in X$. It remains to check

- (i) q(x) = 0, if and only if $x = 0_X$,
- (ii) q(tx) = |t|q(x) for $t \in \mathbb{R}, x \in X$,
- (iii) $q(x_1 + x_2) \le q(x_1) + q(x_2)$ for $x_1, x_2 \in X$.

For (i), if q(x) = 0, then $||x||_X \le ||x||_X + ||Tx||_Y = 0$, therefore $||x||_X = 0$, hence $x = 0_X$. Conversely, $q(0_X) = ||0_X||_X + ||T(0_X)||_Y = ||0_X||_X + ||0 \cdot T(0_X)||_Y = 0$.

For (ii), suppose $t \in \mathbb{R}, x \in X$, then $q(tx) = ||tx||_X + ||T(tx)||_Y = ||tx||_X + ||tTx||_Y = |t|(||x||_X + ||Tx||_Y) = |t|q(x).$

For (iii), let $x_1, x_2 \in X$, then

$$q(x_1 + x_2) = ||x_1 + x_2||_X + ||T(x_1 + x_2)||_Y$$

= $||x_1 + x_2||_X + ||Tx_1 + Tx_2||_Y$
 $\leq ||x_1||_X + ||x_2||_X + ||Tx_1||_Y + ||Tx_2||_Y$
= $q(x_1) + q(x_2).$

Q2. (\Rightarrow) Suppose X is a Banach space, we want to show that S_X is complete. Let (x_n) be a Cauchy sequence in S_X . Because X is complete, (x_n) converges to some $x \in X$. Since $||x|| = ||\lim_{n\to\infty} x_n|| = \lim_{n\to\infty} ||x_n|| = 1$, we have $x \in S_X$.

 (\Leftarrow) Suppose S_X is complete. Let (x_n) be a Cauchy sequence in X, since

$$|||x_n|| - ||x_m||| \le ||x_n - x_m||,$$

 $(||x_n||)$ is a Cauchy sequence in \mathbb{R} . \mathbb{R} is complete, $(||x_n||)$ converges to some $L \in \mathbb{R}$. If L = 0, then $\lim_{n\to\infty} ||x_n - 0|| = 0$, i.e. $x_n \to 0$. If $L \neq 0$, we may assume that $x_n \neq 0$, then $(x_n/||x_n||)$ is a Cauchy sequence in S_X . (Fact: if (λ_n) is a Cauchy sequence in \mathbb{R} , (x_n) a Cauchy sequence in X, then $(\lambda_n x_n)$ is a Cauchy sequence in X.) By assumption, $x_n/||x_n||$ is convergent to some $s \in S_X$, so $x_n = ||x_n|| \frac{x_n}{||x_n||}$ is convergent to $Ls \in X$.

Q3. (a) Clearly $q(x,y) \ge 0$ for any $(x,y) \in X \oplus Y$ and $q(0_X,0_Y) = 0$. It

remains to check

- (i) If q(x, y) = 0, then $x = 0_X$ and $y = 0_Y$,
- (ii) q(tx, ty) = tq(x, y) for $t \in \mathbb{R}, x \in X, y \in Y$,
- (iii) $q(x_1 + x_2, y_1 + y_2) \le q(x_1, y_1) + q(x_2, y_2)$ for $x_1, x_2 \in X, y_1, y_2 \in Y$.

For (i), suppose q(x, y) = 0, then $||x||_X + ||y||_Y = 0$, therefore $||x||_X = ||y||_Y = 0$, hence $x = 0_X$ and $y = 0_Y$.

For (ii), suppose $t \in \mathbb{R}, x \in X, y \in Y$, then $q(tx, ty) = ||tx||_X + ||ty||_Y = t(||x||_X + ||y||_Y) = tq(x, y).$

For (iii), let $x_1, x_2 \in X, y_1, y_2 \in Y$, then

$$q(x_1 + x_2, y_1 + y_2) = ||x_1 + x_2||_X + ||y_1 + y_2||_Y$$

$$\leq ||x_1||_X + ||x_2||_X + ||y_1||_Y + ||y_2||_Y$$

$$= q(x_1, y_1) + q(x_2, y_2).$$

(b)(\Rightarrow) Suppose that $X \oplus Y$ is a Banach space. By summetry it suffices to show that X is a Banach space. Let (x_n) be a Cauchy sequence in X, then $||x_n||_X = q(x_n, 0_Y)$, so $(x_n, 0_Y)$ is a Cauchy sequence in $X \oplus Y$.

By assumption, $\lim_{n\to\infty} (x_n, 0_Y) = (x, y)$ exists. Since $||x_n - x|| = q(x_n - x, 0_Y) \le q(x_n - x, 0_Y - y)$, it follows that (x_n) converges to x.

(\Leftarrow) Suppose both X, Y are Banach spaces. Let (x_n, y_n) be a Cauchy sequence in $X \oplus Y$, note that $||x_n||_X \leq q(x_n, y_n)$, therefore, (x_n) is a Cauchy sequence in X, by assumption (x_n) converges to some $x \in X$, i.e. $\lim_{n\to\infty} ||x - x_n||_X = 0$. Similarly, (y_n) is convergent to some $y \in Y$, i.e. $\lim_{n\to\infty} ||y - y_n||_Y = 0$. So $\lim_{n\to\infty} q(x_n - x, y_n - y) = 0$ and hence (x_n, y_n) converges to (x, y).