MATH5010 Linear Analysis: Homework 8. Deadline: 04 Dec 2022

Important Notice:

\& The answer paper must be submitted before the deadline.
© The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

1. Let M be a vector subspace of a Hilbert space X. Let M^{\perp} the orthogonal subspace of M. Show that
(a) M^{\perp} is closed.
(b) $(\bar{M})^{\perp}=M^{\perp}$.
2. Let H_{1} and H_{2} be the Hilbert spaces. Let $\left(e_{n}\right)_{n=1}^{\infty}$ and $\left(f_{n}\right)_{n=1}^{\infty}$ be the orthonormal bases for H_{1} and H_{2} respectively. Let $U: H_{1} \longrightarrow H_{2}$ be a linear operator such that $U\left(e_{n}\right)=f_{n}$ for all $n=1,2, \ldots$. Show that $(U x, U y)=(x, y)$ for all $x, y \in H_{1}$.
