Math 6261 23-04-21
\$5.3 Dob's Martingale convergence The
Def. Let (Ω, σ, p) be a prob. space, and $\sigma_{1}=\sigma_{f_{2}} \subset \ldots$ an increasing sequence of sub- σ-algebras of σ.
A sequence X_{1}, x_{2}, \cdots, of r.v.'s with x_{n} being σ_{n}-measurable and $E\left|X_{n}\right|<\infty$, is said to
a submartingale if $E\left(X_{n+1} \mid \tilde{f}_{n}\right) \geqslant X_{n}$ a.s
a martingale if $E\left(X_{n+1} \mid F_{F_{n}}\right)=X_{n}$ ais
a super martingale if

$$
E\left(X_{n+1} \mid \sigma_{n}\right) \leqslant X_{n} \quad \text { ais. }
$$

The fundamental result about martingale is the following theorem of Boob:

The 5.6 (Submartingale convergence The)
Every L^{1} bounded submartingale (i.e. $\sup _{n} E\left|X_{n}\right|<\infty$) converges ass.

Below we prove this result by following the approach in the book "Ergodic theory" of K. Petersen.
we first give the following.
Lem $\quad 5.7$ (Krickeberg Decomposition)
Every L^{1}-bounded submartingale $\left\{X_{n}\right\}$ is the difference of a non-negative martingale $\left\{M_{n}\right\}$ and a nonnegative supermartingale $\left\{S_{n}\right\}$. That is, $X_{n}=M_{n}-S_{n}$.

Pf. Notice that X_{n}^{+}is a non-negative submartingale.
Indeed,

$$
E\left(X_{n+1}^{+} \mid \tilde{f}_{n}\right) \geqslant E\left(X_{n+1} \mid \tilde{f}_{n}\right)=X_{n} .
$$

Since $E\left(X_{n+1}^{+} \mid \sigma_{f_{n}}\right) \geqslant 0$, we obtain $E\left(X_{n+1}^{+} \mid \sigma_{n}\right) \geqslant X_{n}^{+}$, thus, $\left\{X_{n}^{+}\right\}$is a non-negative submartingale.

Next fix m. Let $n \geqslant m$. Then

$$
\begin{aligned}
E\left(X_{n+1}^{+} \mid \sigma_{m}\right) & =E\left(E\left(X_{n+1}^{+} \mid \sigma_{n}\right) \mid \sigma_{m}\right) \\
& \geqslant E\left(X_{n}^{+} \mid \sigma_{m}\right)
\end{aligned}
$$

Hence $E\left(X_{n}^{+} \mid \sigma_{f}\right)$ increases in n.

Write $M_{m}=\lim _{n \rightarrow \infty} E\left(X_{n}^{+} \mid \sigma_{m}\right)$.
We claim that M_{m} is a martingale. Observe that

$$
\begin{aligned}
E\left(M_{n+1} \mid \sigma_{f_{n}}\right) & =E\left(\lim _{k \rightarrow \infty} E\left(X_{k}^{+} \mid \sigma_{f_{n+1}}\right) \mid \sigma_{f_{n}}\right) \\
& =\lim _{k \rightarrow \infty} E\left(E\left(X_{k}^{+} \mid F_{n+1}\right) \mid \sigma_{n}\right) \\
& =\lim _{k \rightarrow \infty} E\left(X_{k}^{+} \mid \sigma_{n}\right) \\
& =M_{n} .
\end{aligned}
$$

Hence M_{n} is a Martingale.
Notice that $M_{n} \in L^{1}$, since $E\left(M_{n}\right)=\lim _{k \rightarrow \infty} E\left(E\left(X_{k}^{+} \mid \sigma_{n}\right)\right)$

$$
\begin{aligned}
& =\operatorname{Tim}_{k \rightarrow \infty} E\left(X_{k}^{+}\right) \\
& \leqslant \sup _{k} E\left|X_{k}\right|<\infty .
\end{aligned}
$$

Finally, let $S_{n}=M_{n}-X_{n}$.
Recall that $M_{n} \geqslant E\left(X_{n+1}^{+} \mid \sigma_{n}\right) \geqslant E\left(X_{n+1} \mid \sigma_{n}\right) \geqslant X_{n}$,
So $S_{n} \geqslant 0$. Moreover, $E\left(S_{n}\right) \leqslant E\left(M_{n}\right)+E\left(\left|X_{n}\right|\right)$

$$
\leqslant 2 \sup _{k} E\left|X_{k}\right|<\infty .
$$

Hence $S_{n} \in L^{1}$. Now

$$
\begin{aligned}
E\left(S_{n+1} \mid \sigma_{f_{n}}\right) & =E\left(M_{n+1} \mid \sigma_{f_{n}}\right)-E\left(X_{n+1} \mid \sigma_{f_{n}}\right) \\
& <M_{n}-X_{n}=S_{n}
\end{aligned}
$$

So S_{n} is a supermartingale.

Lem 5.8 (Optional sampling).
Let $\left\{X_{n}\right\}$ be a non-negative supermartingale w.r.t F_{n}
Let σ, τ be stopping times, that is,

$$
\{\omega: \quad \sigma(\omega) \leq n\} \in F_{n} \quad \text { and }\left\{\omega_{;} \tau(\omega) \leq n\right\} \in \sigma_{n}
$$

for $n=1,2, \cdots$. Define

$$
X_{\tau}(w)= \begin{cases}X_{\tau(w)}(w) & \text { if } \quad \tau(w)<\infty \\ 0 & \text { otherwise }\end{cases}
$$

and similarly for $X_{\sigma}(\omega)$. Suppose that $\sigma \leqslant \tau$, then

$$
E\left(X_{\tau}\right) \leqslant E\left(X_{\sigma}\right)
$$

Pf. Fix $m \geqslant 1$. For $n \geqslant m$, we have

$$
\begin{aligned}
\int_{\{\sigma=m\}} X_{\tau \wedge n} d P & =\int_{\{\sigma=m, \tau \leqslant n\}} X_{\tau} d p+\int_{\{\sigma=m, \tau>n\}} X_{n} d p \\
& \geqslant \int_{\{\sigma=m, \tau \leqslant n\}} X_{\tau} d P+\int_{\{\sigma=m, \tau>n\}} X_{n+1} d P
\end{aligned}
$$

(Since $\{\sigma=m, \tau>n\} \in \sigma_{n}$,

$$
\begin{align*}
& =X_{\{\sigma=m, \tau \leqslant n\}} X_{\tau \wedge(n+1)} d p+\int_{\{\sigma=m, \tau>n\}} X_{\tau \wedge(n+1)} d p \\
& =\int_{\{\sigma=m\}} X_{\tau \wedge(n+1)} d p
\end{align*}
$$

It follows that for $n \geqslant m$,

$$
\begin{aligned}
\int_{\{\sigma=m\}} X_{\sigma} d p=\int_{\{\sigma=m\}} X_{m} d p & =\int_{\{\sigma=m\}} X_{\tau \wedge m} d p \\
& \geqslant \int_{\{\sigma=m\}} X_{\tau \wedge n} d p(\text { by (1)) } \\
& \geqslant \int_{\{\sigma=m, \tau<\infty\}} X_{\tau \wedge n} d p
\end{aligned}
$$

Thus $\int_{\{\sigma=m\}} X_{\sigma} d p \geqslant \int_{\{\sigma=m, \tau<\infty\}} \lim _{n \rightarrow \infty} X_{\tau \wedge^{n}} d p$

$$
\begin{aligned}
& =\int_{\{\sigma=m, \tau<\infty\}} X_{\tau} d p \\
& =\int_{\{\sigma=m\}} X_{\tau} d p . \quad\left(\text { since } X_{\tau}=0 \text { on } \quad\{\tau=+\infty\}\right)
\end{aligned}
$$

Sumining on m gives

$$
E\left(X_{\sigma}\right) \geqslant E\left(X_{\tau}\right) .
$$

Pf of Submartingale convergence Thu:
By Lem 5.7, it is enough to show that every L^{1}-bounded non-negative supermartingle converges ass.
Let $\left\{X_{n}\right\}$ be a non-negative L^{1}-bounded super martingale.
Suppose on the contrary that $\left\{X_{n}\right\}$ does not converge on a set with positive prob. Then $\exists 0<\alpha<\beta<\infty$ such that

$$
E=\left\{w: \quad \frac{\lim _{n}}{n} X_{n}(w) \quad \alpha<\beta \leqslant \lim _{n} X_{n}(w)\right\}
$$

has positive prob.
Define a sequence of stopping times $\left\{\tau_{i}\right\}_{i=0}^{\infty}$ by

$$
\tau_{0} \equiv 1
$$

$$
\tau_{2 i+1}(\omega)=\inf \left\{n>\tau_{2 i}(\omega): \quad X_{n}(\omega)>\beta\right\} \quad \text { if } i \geqslant 0
$$

and

$$
\tau_{2 i}(w)=\inf \left\{n>\tau_{2 i-1}(w): \quad X_{n}(w)<\alpha\right\} \quad \text { if } i \geqslant 1
$$

where we $\inf \phi=+\infty$. Then

$$
\tau_{0} \leqslant \tau_{1} \leqslant \tau_{2} \leqslant \cdots .
$$

Let $P_{j}=P\left\{\omega: \tau_{j}(\omega)<\infty\right\}$. Then we have $P_{2 j} \leqslant P_{2 j-1}$.
Moreover

$$
\begin{aligned}
\beta P_{2 i+1} \leqslant \int_{\left\{\tau_{2 i+1}<\infty\right\}} X_{\tau_{2 i+1}} d p & =\int X_{\tau_{2 i+1}} d p \\
& \leqslant \int_{\tau_{2 i}} d p \\
& =\int_{\left\{\tau_{2 i}<\infty\right\}} X_{\tau_{2 i}} d p \\
& \leqslant \alpha P_{2 i}
\end{aligned}
$$

Hence

$$
P_{2 i+1} \leqslant \frac{\alpha}{\beta} P_{2 i} \leqslant \frac{\alpha}{\beta} P_{2 i-1} \leqslant \cdots \leqslant\left(\frac{\alpha}{\beta}\right)^{i} P_{1} \rightarrow 0
$$

But $P_{2 i+1} \geqslant P(E)>0$, leading to a contradiction.

Remark: . Under the assumption of the 5.6, we only have.

$$
\left\{X_{n}\right\} \text { converges are. }
$$

- It is possible that X_{n} does not converge in L^{1}.

Def. A collection of r.v.'s $X_{i}, i \in \mathbb{Z}$, is said to be uniformly integrable if

$$
\begin{equation*}
\lim _{M \rightarrow \infty}\left(\sup _{i \in \pi} \int_{\left\{\left|x_{i}\right|>M\right\}}\left|x_{i}\right| d p\right)=0 \tag{2}
\end{equation*}
$$

- If we pick M large enough so that the sup <1, then

$$
\begin{aligned}
E\left|X_{i}\right| & =\int_{\left\{\left|x_{i}\right|>M\right\}}\left|x_{i}\right| d p+\int_{\left\{\left|x_{i}\right|<M\right.}\left|x_{i}\right| d p \\
& \leqslant 1+M \quad \text { for all } i \in \tau
\end{aligned}
$$

Thy 5.9 Let $\left\{X_{n}\right\}$ be a uniformly integral submartingale.
Then it converges a.s and in L^{1}.
PF. It follows from Thm 5.6 and the Vitali convergence The.

