we first give the following.
Lem 5.7 (Krickeberg Decomposition)
Every L¹-bounded submartingale { Xn} is the difference
of a non-negative martingale { Mn} and a non-negative
supermartingale { Sn}. That is, Xn = Mn-Sn.
Pf. Notice that Xn⁺ is a non-negative submartingale.
Indeed,

$$E(Xnti | Fn) \ge E(Xnti | Fn) = Xn.$$

Since $E(Xnti | Fn) \ge 0$, we obtain $E(Xnti | Fn) \ge Xn^{+}$,
thus, {Xn } is a non-negative submartingale.
Next fix m. Let $n \ge m$. Then
 $E(Xnti | Fm) = E(E(Xnti | Fn) | Fm)$
 $\ge E(Xnti | Fm)$.
Hence $E(Xnti | Fm)$ increases in N.

Hence
$$S_n \in L^1$$
. Now
 $E(S_{nti} | \mathcal{F}_n) = E(M_{nti} | \mathcal{F}_n) - E(X_{nti} | \mathcal{F}_n)$
 $< M_n - X_n = S_n$.
So S_n is a supermartingale. \square
Let S_n (optional sampling).
Let $\{X_n\}$ be a non-negative supermartingale w.r.t \mathcal{F}_n
Let G' , τ be stopping times, that is
 $\{w: \sigma(w) \le n\} \in \mathcal{F}_n$ and $\{w: \tau(w) \le n\} \in \mathcal{F}_n$
for $n=1, 2, \cdots$. Define
 $X_{\tau}(w) = \{X_{\tau(w)}(w) \text{ if } \tau(w) \le n \le \tau, \text{ then}$
 $E(X_{\tau}) \in E(X_{\sigma}).$

$$= \int_{\{\sigma=m, \tau < \omega\}} X_{\tau} d\rho$$

$$= \int_{\{\sigma=m\}} X_{\tau} d\rho. \quad (sin(a = X_{\tau} = 0 \text{ on} \\ \{\tau=+\infty\})$$
Summing on m gives
$$E(X_{\sigma}) \ge E(X_{\tau}). \qquad \square$$
Pf of Submartingale convergence Thm:
By Lem 5.7, it is enough to show that every L^{1} -bounded
non-negative supermartingle converges as.
Let $\{X_{n}\}$ be a non-negative L^{1} -bounded supermartingale.
Suppose on the contrary that $\{X_{n}\}$ does not converge on a set
with positive prob. Then $\exists o < d < \beta < \omega$ such that
$$E = \{\omega: \lim_{n} X_{n}(\omega) \ d < \beta < \lim_{n} X_{n}(\omega) \}$$
has positive prob.
Define a sequence of stopping times $\{T_{n}\}_{n=0}^{\infty}$ by
$$T_{o} = 1,$$

$$T_{2i+i}(\omega) = \inf \left\{ n > T_{2i}(\omega): X_n(\omega) > \beta \right\} \quad \text{if } i \ge 0$$
and
$$T_{2i}(\omega) = \inf \left\{ n > T_{2i-j}(\omega): X_n(\omega) < \alpha \right\} \quad \text{if } i \ge 1,$$

$$\text{where we } \inf \left\{ \phi = +\infty, \text{ Then}$$

$$T_0 \le T_i \le T_2 \le \cdots.$$
Let $P_j = P\left\{ \omega: T_j(\omega) < \infty \right\}. \text{ Then we have } P_{2j} \le P_{2j-1}.$
Moreover
$$\beta P_{2i+1} \le \int X_{T_{2i+1}} dP = \int X_{T_{2i+1}} dP$$

$$= \int_{\left\{ T_{2i} < \infty \right\}} X_{T_{2i}} dP$$

$$= \int_{\left\{ T_{2i} < \infty \right\}} X_{T_{2i}} dP$$

$$\leq dP_{2i}.$$
Hence
$$P_{2i+1} \le Q P_{2i} \le dP_{2i-1} \le \cdots \le \left(\frac{d}{p}\right)^i P_1 \rightarrow 0.$$

$$B_{ut} P_{2i+1} \ge P(E) > 0, \text{ leading to a contradiction.}$$

Remark: • Under the assumption of thm 5.6, we only have.

$$\{X_n\} \text{ converges a.e.}$$
• It is possible that X_n does not converge in \lfloor^2 .
Def. A collection of r.u.'s X_i , is said to be
uniformly integrable if
lim $(\sup_{i \in \mathcal{X}} \int |X_i| dP) = 0$ (2)
 $M \to \infty$ $\{IX_i| SM\}$
• If we pick M large enough so that the sup < 1,
then
 $E[X_i] = \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| dP + \int |X_i| dP + \int |X_i| dP$
 $\{|X_i| d$