Math 6261 23-03-24

Review.

The. Suppose that X_{1}, x_{2}, \cdots, are independent with mean 0 . If $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}\right)<\infty$, then $\sum_{n=1}^{\infty} X_{n}$ converges with prob. 1

- The following result, called the three-series The, provides necessary and sufficient conditions for the convergence of ΣX_{n} in terms of the individual distribution of X_{n}.

For $c>0$, let $X_{n}^{(c)}=X_{n} \mathbb{1}_{\left\{\left|X_{n}\right| \leqslant c\right\}}$ be X_{n} truncated at c

The 4.6 (Kolmogrov's three-series Thm). Let X_{1}, X_{2}, \cdots, be independent r.v.'s. Let $c>0$. Then in order that $\sum_{n=1}^{\infty} X_{n}$ converges a.s., it is necessary and sufficient that
(1) $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>c\right)<\infty$,
(2) $\sum_{n=1}^{\infty} E X_{n}^{(c)}<\infty$,
(3) $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}^{(c)}\right)<\infty$.

Pf of Sufficiency: Suppose that the three series converge
Write $m_{n}=E X_{n}^{(c)}$. By The 4.4,

$$
\sum_{n=1}^{\infty}\left(X_{n}^{(c)}-m_{n}\right) \text { converges a.s. }
$$

Since $\sum_{n=1}^{\infty} m_{n}$ converges,
Since $\sum_{n=1}^{\infty}$ it follows that $\sum_{n=1}^{\infty} X_{n}^{(c)}$ converges a.s.
since $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>c\right)<\infty, 1$
by the first Borel-Cantelli lemma,

$$
P\left(\left|X_{n}\right|>c \quad i .0\right)=0
$$

which implies that

$$
P\left(X_{n} \neq X_{n}^{(K)} \text { i.0. }\right)=0 .
$$

Hence it follows that $\sum_{n=1}^{\infty} X_{n}$ converges ass.

Pf of necessity.
Suppose that $\sum_{n=1}^{\infty} x_{n}$ converges a.s. Fix $c>0$.
sine $X_{n} \rightarrow 0$ ais, it follows that $\sum X_{n}^{c}$ converges ais. and by the second Bored Cantelli lemma,

$$
\sum_{n=1}^{\infty} P\left(\left|x_{n}\right|>c\right)<\infty
$$

In what follows we show that $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}^{(c)}\right)<\infty$

Write $M_{n}=E\left(\sum_{k=1}^{n} X_{n}^{(k)}\right)$

$$
s_{n}^{2}=\operatorname{Var}\left(\sum_{k=1}^{n} X_{n}^{(c)}\right)
$$

Assume, on the contrary, that $S_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
Since $X_{n}^{(c)}-E\left(X_{n}^{(c)}\right)$ are uniformly bounded, by the CLT,

$$
\begin{align*}
\lim _{n \rightarrow \infty} P(x & \left.<\frac{X_{1}^{c}+\cdots+X_{n}^{c}-M_{n}}{s_{n}}<y\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{x}^{y} e^{-z^{2} / 2} d z \tag{**}
\end{align*}
$$

Since $\sum_{n=1}^{\infty} X_{n}^{c}$ converges, $\quad S_{n} \rightarrow \infty$ also implies that

$$
\frac{X_{1}^{c}+\cdots+X_{n}^{c}}{s_{n}} \rightarrow 0 \quad \text { ais. }
$$

Hence

$$
\begin{equation*}
P\left(\left|\frac{X_{1}^{c}+\cdots+X_{n}^{c}}{s_{n}}\right|>\varepsilon\right) \rightarrow 0 \tag{***}
\end{equation*}
$$

Now $(* *)$ and $(* * *)$ stand in contradiction: Since

$$
P\left(x<\frac{X_{1}^{c}+\cdots+X_{n}^{c}-M_{n}}{s_{n}}<y, \quad\left|\frac{X_{1}^{c}+\cdots+X_{n}^{c}}{s_{n}}\right|<\varepsilon\right)
$$

is positive for all sufficiently large n (if $x<y$), but then

$$
x-\varepsilon<\frac{-M_{n}}{S_{n}}<y+\varepsilon . \quad(* * * *)
$$

However, $(* * * *)$ can not hold simultaneously for
say, $(x-\varepsilon, y+\varepsilon)=(-1,0)$ and $(x-\varepsilon, y+\varepsilon)=(1,2)$.
Hence we have $\lim _{n \rightarrow \infty} S_{n}<\infty$, that is, $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}^{c}\right)<\infty$
Now by The 4.4,
$\sum_{n=1}^{\infty}\left(X_{n}^{c}-E X_{n}^{c}\right)$ converges a.s.
Since $\sum_{n=1}^{\infty} X_{n}^{c}$ converges, ${ }^{\text {abs }}$, we have $\sum_{n=1}^{\infty} E X_{n}^{c}$ converges.

Now we turn to the properties of random walks.

Def. (Random walks).
Let X_{1}, x_{2}, \cdots, be i.i.d. random vectors in \mathbb{R}^{d}. Set

$$
S_{n}=X_{1}+\cdots+X_{n} .
$$

Then S_{n} is called a random walk.

For convenience, we build a new prob. space

$$
\begin{aligned}
& \Omega=\left\{\omega=\left(\omega_{1}, \omega_{2}, \cdots\right): \omega_{i} \in \mathbb{R}^{d}\right\} \\
& \sigma=\beta\left(\mathbb{R}^{d}\right) \times \cdots \times \beta\left(\mathbb{R}^{d}\right) \times \cdots \\
& P=\mu \times \mu \times \cdots \times \mu \cdots
\end{aligned}
$$

where μ is the law of X_{i}.
Set $\quad X_{n}(\omega)=\omega_{n}$.

Let $\mathbb{N}=\{1,2, \cdots\}$ be the set of positive integers.
Def A finite permutation $\mathbb{N}: \mathbb{N} \rightarrow \mathbb{N}$ is a map such that

$$
\pi(i) \neq i
$$

for only finitely many i.

For a finite permutation π of \mathbb{N} and $\omega \in \Omega$, define

$$
(\pi \omega)_{i}=\omega_{\pi(i)}
$$

That is, the coordinates of ω are rearranged according to π.

Def. An event $A \subset \Omega$ is called permutable if

$$
P(A)=P\left(\pi^{-1} A\right)
$$

for any finite permutation π.

In other words, A is permutable if the occurrence of A is not affected if re-arranging finitely many of the r.u.s

Def The collection of all permutable events is a σ-field. It is called the exchangeable σ-field and is denoted by ε.

Example: Suppose $d=1$. Then
(1) $\left\{\omega: S_{n}(\omega) \in B\right.$ i.0. $\}$
(2) $\left\{\omega: \limsup _{n \rightarrow \infty} \frac{S_{n}(\omega)}{C_{n}} \geqslant 1\right\}$
are permutable. This is because for each finite permutation π,

$$
S_{n}(\omega)=S_{n}(\pi \omega) \text { for large } n \text {. }
$$

Fact: All events in the tail σ-field are permutable.
To see it, notice that if $A \in \sigma\left(X_{n+1}, X_{n+2}, \cdots\right)$, then the occurrence of A is unaffected by a permutation of $X_{1}, X_{2}, \cdots, X_{n}$.

The following result generalizes Kolmogrov's 0-1 Law:

The 4.7 (Hewitt-Savage 0-1 law) If x_{1}, x_{2}, \cdots, are i.i.d and $A \in \mathcal{E}$. Then

$$
P(A)=0 \text { or } 1 \text {. }
$$

Pf. Let $A \in \mathcal{E}$.
The idea is to show that A is independent it self.
Since $A \in \sigma\left(X_{1}, X_{2}, \cdots\right)$, there exists $A_{n} \in \sigma\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ such that

$$
P\left(A_{n} \Delta A\right) \rightarrow 0 \text {. }
$$

Here $A \Delta B=(A \backslash B) \cup(B \backslash A)$ is the symmetric difference.
Notice that A_{n} can be written as

$$
A_{n}=\left\{\omega:\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right) \in B_{n}\right\}
$$

for some B_{n}.
Now define a permutation π by

$$
\pi(j)=\left\{\begin{array}{ccr}
j+n & \text { if } & 1 \leqslant j \leqslant n \\
j-n & \text { if } & n+1 \leqslant j \leqslant 2 n \\
j & \text { if } & j>2 n .
\end{array}\right.
$$

Then $P=P \cdot \pi^{-1}$

$$
\begin{aligned}
P\left(A_{n} \Delta A\right) & =P\left\{\omega: \omega \in A_{n} \Delta A\right\} \\
& =P\left\{\omega: \pi \omega \in A_{n} \Delta A\right\} \\
& =P\left\{\omega: \omega \in \pi^{-1} A_{n} \Delta \pi^{-1} A\right\} \\
& =P\left\{\omega: \omega \in \pi^{-1} A_{n} \Delta A\right\}, \text { since } \pi^{-1} A=A .
\end{aligned}
$$

Write $A_{n}{ }^{\prime}=\Pi^{-1} A_{n}$.
Then $A_{n}^{\prime}=\left\{\omega: \quad\left(\omega_{n+1}, \cdots, \omega_{2 n}\right) \in B_{n}\right\}$.
So A_{n} and A_{n}^{\prime} are independent.
Now $\quad P\left(A_{n} \Delta A\right) \rightarrow 0$

$$
P\left(A_{n}^{\prime} \Delta A\right) \rightarrow 0
$$

Since $\quad A_{n} \Delta A_{n}^{\prime} \subset\left(A_{n} \Delta A\right) \cup\left(A_{n}^{\prime} \Delta A\right)$
So

$$
P\left(A_{n} \Delta A_{n}^{\prime}\right) \rightarrow 0
$$

Notice that

$$
\begin{aligned}
0 & \leqslant P\left(A_{n}\right)-P\left(A_{n} \cap A_{n}^{\prime}\right) \\
& \leqslant P\left(A_{n} \cup A_{n}^{\prime}\right)-P\left(A_{n} \cap A_{n}^{\prime}\right) \\
& =P\left(A_{n} \Delta A_{n}^{\prime}\right) \rightarrow 0
\end{aligned}
$$

So $\quad P\left(A_{n} \cap A_{n}^{\prime}\right) \rightarrow P(A)$.
But $P\left(A_{n} \cap A_{n}^{\prime}\right)=P\left(A_{n}\right) P\left(A_{n}^{\prime}\right) \rightarrow P(A)^{2}$.
It follows that

$$
P(A)=P(A)^{2} \text {. }
$$

As an application, we have the following.

The 4.8: For a random walk on \mathbb{R}, there are only 4 possible cases, one of which has probability 1.
(i) $S_{n}=0$ for all n.
(ii) $S_{n} \rightarrow+\infty$.
(iii) $S_{n} \rightarrow-\infty$
(iv) $-\infty=\liminf S_{n}<\lim \sup S_{n}=\infty$.

Pf. By The 4.7.

$$
\limsup S_{n}=c \in[-\infty, \infty] \text { ais. }
$$

Let $S_{n}^{\prime}=S_{n+1}-X_{1}$. Since $S_{n+1}-X_{1}$ has the same distribution.

It follows that $c=C-X_{1}$.
If c is finite, then $X_{1} \equiv 0$ and
(i) occurs.

If C is not finite, then $C=+\infty$ or $-\infty$.
The same analysis applies to the liming.

