Math 6261 23-03-24 Review. Suppose that X1, X2, ..., are independent with mean O. Thm. $\sum_{n=1}^{\infty} Var(X_n) < \infty, \quad \text{then} \quad \sum_{n=1}^{\infty} X_n \quad \text{converges} \quad with \text{ prob. 1}$ If The following result, called the three-series Thm, provides necessary and sufficient conditions for the convergence of ΣXn in terms of the individual distribution of Xn. For C>0, let $X_n^{(C)} = X_n I_{\{|X_n| \leq C\}}$ be Xn truncated at C Thm 4.6 (Kolmogrov's three-series Thm). Let X1, X2, ..., be independent r.v.'s. Let C > 0. Then in order that $\sum_{n=1}^{\infty} X_n$ converges a.s., it is necessary and sufficient that $(1) \sum_{n=1}^{\infty} P(|X_n| > c) < \infty,$ $(2) \sum_{n=1}^{\infty} E \chi_n^{(c)} < \infty,$ (3) $\sum_{n=1}^{L_0} Var\left(X_n^{(C)}\right) \ll \infty$.

$$\begin{split} & \text{ Wn te } \quad M_n = \ E \Big(\begin{array}{c} \sum_{k=1}^{n} X_n^{(c)} \\ \\ & S_n^{z} = \ Var \left(\begin{array}{c} \sum_{k=1}^{n} X_n^{(c)} \\ \\ \\ \\ & \text{ Assume, on the contrary, that } S_n \rightarrow \infty \text{ as } n \rightarrow \infty \\ \\ & \text{ Since } \quad X_n^{c} - E \left(X_n^{(c)} \right) \text{ are uniformly bounded, by the CLT,} \\ \\ & \text{ lim } \\ & n \rightarrow \infty \end{array} \begin{array}{c} P \left(\begin{array}{c} x < \frac{X_n^c + \dots + X_n^c}{S_n} - M_n \\ \\ & \sqrt{Sn} \int_X^{c} e^{-2t/s} ds \\ \\ & \text{ (**) } \end{array} \right) \\ & = \begin{array}{c} 1 \int_X^{c} \int_X^{c} e^{-2t/s} ds \\ \\ & \frac{y_n^{c}}{S_n} \int_X^{c} converges, \quad S_n \rightarrow \infty \text{ also implies that} \end{array} \\ \\ & \frac{X_n^c + \dots + X_n^c}{S_n} \rightarrow o \quad \text{ a.s.} \\ \\ & \text{ Hence } P \left(\begin{array}{c} \left| \frac{X_n^c + \dots + X_n^c}{S_n} \right| > \epsilon \right) \rightarrow o \\ \\ & \text{ (***) } \end{array} \right) \\ & \text{ Now } (***) \text{ and } (***) \text{ stand in contradiction: } \text{ Since } \\ \\ & P \left(\begin{array}{c} x < \frac{X_n^{c} + \dots + X_n^c}{S_n} \right| < \epsilon \end{array} \right) \\ & \text{ is positive for all sufficiently large n } (\text{ if } x < y), \text{ but } \\ \\ & \text{ then } \\ & x - \epsilon < \frac{-M_n}{S_n} < y + \epsilon \end{array} \right) \\ & \text{ Hence } Y = \begin{array}{c} -\frac{M_n}{S_n} < y + \epsilon \end{array}$$

Say,
$$(x-\epsilon, \frac{k}{2}+\epsilon) = (-1, o)$$
 and $(x-\epsilon, \frac{k}{2}+\epsilon) = (1, 2)$.
Hence we have $\lim_{n \to 0} S_n < \infty$, that is, $\sum_{n=1}^{\infty} V_{or}(X_n^c) < \infty$
Now by Thm 4.4,
 $\sum_{i=1}^{\infty} (X_n^c - E X_n^c)$ converges, a.s.
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{n=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{n=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{n=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{n=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{n=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{n=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{n=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{n=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{i=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{i=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} X_n^c$ converges, we have $\sum_{i=1}^{\infty} E X_n^c$ set
 $\sum_{i=1}^{\infty} E X_n^c$, $\sum_{i=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} E X_n^c$ converges, $\sum_{i=1}^{\infty} E X_n^c$ converges, $\sum_{i=1}^{\infty} E X_n^c$ converges,
 $\sum_{i=1}^{\infty} E X_n^c$ converges, $\sum_{i=1}^{\infty} E X_n^c$ converges, $\sum_{i=1}^{\infty} E X_n^c$ converges, $\sum_{i=1}^{\infty} E X_n^c$ converges, $\sum_{i=1}^{\infty} E X_n^c$ converges, $\sum_{i=1}^{\infty} E X_n^c$ converges, $\sum_{i=1}^{\infty}$

where
$$\mu$$
 is the law of χ_i .
Set $\chi_n(\omega) = \omega_n$.
Let $\mathbb{N} = \{i, z, \dots\}$ be the set of positive integers.
Def A finite permutation $\mathbb{T}: \mathbb{N} \to \mathbb{N}$ is a map such that
 $\mathbb{T}(i) \neq i$
for only finitely many i .
For a finite permutation \mathbb{T} of \mathbb{N} and $\omega \in \Omega$, define
 $(\mathbb{T}\omega)_i = \omega_{\pi(i)}$.
That is, the coordinates of ω are rearranged according to π .
Def. An event $A \subset \Omega$ is called permutable if
 $P(A) = P(\pi^T A)$
for any finite permutation \mathbb{T} .
In other words, A is permutable if the occurrence of A
is not affected if re-arranging finitely many of the r.u.s

Def The collection of all permutable events is a st-field.
It is called the exchangeable st-field and is denoted by E.
Example: Suppose d=1. Then

$$\emptyset \quad \{\omega: S_n(\omega) \in B \text{ i.o. }\}$$

 $\circledast \quad \{\omega: \lim_{n \to \infty} \frac{S_n(\omega)}{C_n} \ge 1\}$
are permutable. This is because for each finite permutation π ,
 $S_n(\omega) = S_n(\pi \omega)$ for large n.
Fact: All events in the tail st-field are permutable.
To see it, notice that if $A \in S(X_{nti}, X_{nti}, \cdots)$, then the
occurrence of A is unaffected by a permutation of X₁, X₂, ..., X_n.

The following result generalizes Kolmogrou's 0-1 Law:

Thm 4.7 (Hewitt-Savage 0-1 law)
If X₁, X₂, ..., are i.i.d and
$$A \in E$$
. Then
 $P(A) = o$ or 1.
Pf. Let $A \in E$.
The idea is to show that A is independent itself.
Since $A \in \mathcal{C}(X_1, X_2, ...)$, there exists $An \in \mathcal{C}(X_1, X_2, ..., X_n)$
such that
 $P(An \triangleq A) \Rightarrow o$.
Here $A \triangleq B = (A \setminus B) \cup (B \setminus A)$ is the symmetric difference.
Notice that An can be written as
 $An = \{ \omega : (\omega_1, \omega_2, ..., \omega_n) \in Bn \}$
for some Bn .
Now define a permutation TT by
 $T(j) = \{ j+n \quad if \quad i \leq j \leq n \\ j-n \quad if \quad n \leq i \leq 2n \\ j \quad j > 2n .$
Then $P = P \circ TT^{T}$

$$P(A_{n} a A) = P\{ \omega: \omega \in A_{n} a A \}$$

$$= P\{ \omega: \pi \omega \in \pi^{-}A_{n} a \pi^{-}A \}$$

$$= P\{ \omega: \omega \in \pi^{-}A_{n} a \pi^{-}A \}$$

$$= P\{ \omega: \omega \in \pi^{-}A_{n} a A \}, \text{ since } \pi^{-}A = A.$$

$$Wn te A_{n}' = \pi^{-}A_{n}.$$
Then $A_{n}' = \{ \omega: (\omega_{n+1}, \cdots, \omega_{n}) \in B_{n} \}.$
So A_{n} and A_{n}' are independent.
Now $P(A_{n} a A) \rightarrow o$
 $P(A_{n}' a A) \rightarrow o$
 $P(A_{n}' a A) \rightarrow o$.
Since $A_{n} a A_{n}' \subset (A_{n} a A) \cup (A_{n}' a A)$
So $P(A_{n} a A_{n}') \rightarrow o$.
Notice that
 $o \leq P(A_{n}) - P(A_{n} \cap A_{n}')$
 $= P(A_{n} a A_{n}') \rightarrow o$

So
$$P(A_n \cap A_n') \rightarrow P(A)$$
.
But $P(A_n \cap A_n') = P(A_n) P(A_n') \rightarrow P(A)^{A_n}$.
It follows that
 $P(A) = P(A)^{A_n}$. ID
As an application, we have the following.
As an application, we have the following.
Thm 4.8: For a random walk on IR, there are only
4 possible Cases, one of which has probability 1.
(i) $S_n = o$ for all n .
(ii) $S_n \rightarrow +\infty$.
(iii) $S_n \rightarrow +\infty$.
(iii) $S_n \rightarrow -\infty$
(iv) $-\infty = \lim \inf S_n < \lim S_p S_n = \infty$.
Pf. By Thm 4.7.
Let $S_n' = S_{n+1} - X_1$. Since $S_{n+1} - X_1$ has the same
olivition.
It follows that $C = C - X_1$.
If C is finite, then $X_1 = o$ and (i) occurs.

If C is not finite, then C=+10 or -00. The same analysis applies to the liminif.