1. Measure theory
1.1 Measure spaces and probability spaces.

Def. Let $\Omega \neq \phi$. A collection f of subsets of Ω is said to be a σ-algebra on Ω if
(1) If $F \in F$, then $F^{c} \in \mathcal{F}$, where $F^{c}=\Omega \backslash F$
(2) If $F_{n} \in \mathcal{F}, n \geqslant 1$, then $\bigcup_{n=1}^{\infty} F_{n} \in \mathcal{F}$.

Remark: A σ-algebra is closed under the complement, countable union and countable intersection

$$
\left.\bigcap_{n=1}^{\infty} F_{n}=\left(\bigcup_{n=1}^{\infty} F_{n}^{c}\right)^{c}\right)
$$

- Let $\left\{\sigma_{i}\right\}_{i \in \mathcal{I}}$ be a family of σ-algebras on Ω. Then
$\bigcap_{i \in \mathcal{Z}} \widetilde{f}_{i}$ is also a σ-algebra on Ω.

Def. Let A be a collection of subsets of Ω.
Let $\sigma(A)$ denote the smallest σ-algebra on Ω that contains A. we call $\sigma(A)$ the σ-algebra generated by A.

Example. Let X be a topological space. Let $\beta(X)$ denote the σ-algebra generated by the collection of open sets in X. we call $\beta(X)$ the Borel σ-algebra.

Let $\beta(\mathbb{R})$ denote the Bore σ-algebra on \mathbb{R}. Each element in $\beta(\mathbb{R})$ is called a Bored set in \mathbb{R}.

Def. (Measurable space) (Ω, \mathcal{F}) is called a measurable space if $\Omega \neq \phi$ and σ is a σ-algebra on Ω.

Def. (measure) A function $\mu: \tilde{f} \rightarrow[0, \infty]$ is called a measure on (Ω, σ) if
(i) $\mu(\phi)=0$.
(ii) $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ if

An, $n \geqslant 1$, are disjoint elements in \tilde{f}.
Prop 1.1. Let μ be a measure on (Ω, \mathcal{f}). Then
(i) $\mu(A) \leqslant \mu(B)$ if $A \subset B$
(monotonicity)
(ii) $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leqslant \sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ for $A_{n} \in \sigma$. (Sub-additivity)
(iii) If $A_{n} \uparrow A$, then $\mu\left(A_{n}\right) \rightarrow \mu(A)$ as $n \rightarrow \infty$
(iv) If $A_{n} \vee A$ and $\mu\left(A_{1}\right)<\infty$, then (continuity from below)

$$
\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A) . \quad \text { (continuity from above) }
$$

Def. A triple (Ω, F, μ) is called a measure space if μ is a measure on (Ω, F).

- If $\mu(\Omega)=1$, we call μ a prob. measure. Correspondingly, (Ω, F, μ) is called a prob. space.
Usually a prob. measure is denoted as P.

Example. (discrete prob. space)
Let Ω be a countable set. Let

$$
\mathcal{F}=2^{\Omega}:=\{A: A \subset \Omega\}
$$

Than (Ω, F) is a measurable space
Let $\{p(\omega)\}_{\omega \in \Omega}$ be a prob. vector, ie. $p(\omega) \geq 0$ and $\sum_{\omega \in \Omega} p(\omega)=1$.
Define

$$
P(A)=\sum_{\omega \in A} p(\omega) \quad \text { for all } A \subset \Omega
$$

Then (Ω, σ, p) is a (discrete) prob. space.

Example (Bore measure on \mathbb{R}) A measure μ on $(\mathbb{R}, \beta(\mathbb{R})$) is called a Bore measure on \mathbb{R}.

Prop 1.2. Let μ be a Bore prob. measure on \mathbb{R}. Set

$$
F(x)=\mu((-\infty, x]) \quad \text { for } \quad x \in \mathbb{R} \text {. }
$$

Then
(1) F is non-decreasing, i.e. $F(x) \leqslant F(y)$ if $x<y$.
(2) F is right-continuous, i.e.

$$
\lim _{y \rightarrow x^{+}} F(y)=F(x)
$$

(3) $\lim _{x \rightarrow+\infty} F(x)=1, \quad \lim _{x \rightarrow-\infty} F(x)=0$.

Pf. (1) is trivial. (2) \& (3) follow from the continuity property of a prob. measure. 四.
1.2 Random variables and their distributions.

Let (Ω, F, P) be a probability space.
Def. A function $X: \Omega \rightarrow \mathbb{R}$ is said to be \tilde{f}-measurable if
$X^{-1}(A) \in \mathcal{F}$ for every Bore set $A \subset \mathbb{R}$. If so, we call X a random variable (rv.).

Example: - Let (Ω, \mathcal{F}, P) be a discrete prob. space.
Then any function $X: \Omega \rightarrow \mathbb{R}$ is a $r . v$.

- Let (Ω, F, p) be a general prob. space and let $A \in F$. Define $\mathbb{1}_{A}: \Omega \rightarrow \mathbb{R}$ by

$$
\mathbb{1}_{A}(x)= \begin{cases}1 & \text { if } x \in A, \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathbb{1}_{A}$ is a r.u. which is called the indicator function of A.
(check: $\mathbb{1}_{A}^{-1}\{1\}=A, \mathbb{1}_{A}^{-1}\{0\}=A^{c}$)

Def. Let X be a riv. on (Ω, σ, P). Then X induces a prob. measure μ on \mathbb{R} by

$$
\mu(A)=P(X \in A):=P\left(X^{-1}(A)\right), \quad A \in \beta(\mathbb{R}) \text {. }
$$

We call μ the distribution of X.
Moreover, set $F(x)=P\{X \leqslant x\}=\mu((-\infty, x])$ for $x \in \mathbb{R}$; we call it the distribution function of X.

If $F(x)$ has the form

$$
F(x)=\int_{-\infty}^{x} f(y) d y,
$$

then we say X has the density function f.

Example: (1) (Uniform distribution on $(0,1)$).

$$
\begin{aligned}
& \text { - } f(x)= \begin{cases}1 & \text { for } \quad x \in(0,1) \\
0 & \text { other } \omega \text { is }\end{cases} \\
& \text { - } f(x)= \begin{cases}1 & \text { if } x \geq 1 \\
x & \text { if } 0 \leq x \leq 1 \\
0 & \text { if } x<0 .\end{cases}
\end{aligned}
$$

(2) (exponential distribution with parameter λ)

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right. \\
& F(x)=\left\{\begin{array}{cc}
1-e^{-\lambda x} & \text { if } x>0 \\
0 & \text { if } x \leqslant 0
\end{array}\right.
\end{aligned}
$$

(3) (standard norm distribution)

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}}, \quad x \in \mathbb{R}
$$

1.3. Random elements and random vectors.

Now we generalize the concept of ru.
Def. A map $X: \Omega \rightarrow T$ from (Ω, \mathcal{F}, P) to a measurable space (T, T) is said to be measurable if
$X^{-1}(A) \in \sigma$ for every $A \in \sigma$.
In this case, we call X a random element of (T, σ).
If $(T, \sigma)=\left(\mathbb{R}^{d}, \beta\left(\mathbb{R}^{d}\right)\right)$, then we call X a random vector.

Def. Let $X: \Omega \rightarrow T$ be a random element. Set

$$
\sigma(X)=\left\{X^{-1}(A): A \in \sigma\right\} .
$$

We call it the σ-algebra generated by X.

Below we give a useful result to check the measurability of $X: \Omega \rightarrow T$.
Prop 1.3. Let $X: \Omega \rightarrow T$ be a map. Suppose A is a collection of subsets of T such that $\sigma(A)=T$. Then
X is F-measurable $\Leftrightarrow X^{-1}(A) \in \sigma_{F}$ for all $A \in A$.
Pf. " Let $\gamma:=\left\{A \subset T: X^{-1}(A) \in \mathcal{F}\right\}$. Then \mathcal{J} is a σ-algebra. and contains A. Hence $\gamma \supset \sigma(A)=T$.

Prop 1.4. If $X:(\Omega, F) \rightarrow(T, \sigma)$
and $f:(T, T) \rightarrow(U, Q)$ are measurable, then so is $f(X):(\Omega, \mathcal{F}) \rightarrow(U, U)$.

Pf. Let $A \in \mathcal{U}$. Then $f^{-1}(A) \in \mathscr{S}$. Thus

$$
X^{-1}\left(f^{-1}(A)\right) \in \sigma .
$$

Hence $(f(X))^{-1}(A)=X^{-1}\left(f^{-1}(A)\right) \in F$.

- Extended real line $\mathbb{R}^{*}=[-\infty, \infty]$

Endow \mathbb{R}^{*} with the topology generated by

$$
[-\infty, a),(a, b),(b,+\infty]
$$

Let $\beta\left(\mathbb{R}^{*}\right)$ denote the Bore σ-algebra on \mathbb{R}^{*}.
A measurable map $X:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{*}, \beta\left(\mathbb{R}^{*}\right)\right)$ is also Called a random variable.

Prop. 1.5. Let X_{1}, X_{2}, \cdots, be r.u.'s. Then

$$
\inf _{n} X_{n}, \sup _{n} X_{n}, \lim _{n} X_{n}, \overline{\lim }_{n} X_{n}
$$

are all r.v.'s.
1.4 Integration

Let (Ω, F, μ) be a measure space and $f: \Omega \rightarrow \mathbb{R}^{*}$ be measurable.

Then we can define

$$
\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu
$$

if one of $\int f^{+} d \mu, \int f^{-} d \mu$ is finite.
We call f integrable if $\int|f| d \mu<\infty$, and write

$$
f \in L^{1}(\Omega, \sigma, \mu) \text { or } L^{1}(\mu) \text {. }
$$

Moreover we write $f \in L^{p}(\mu)$ if $\int|f|^{p} d \mu<\infty$ and $\|f\|_{p}:=\left(\int|f|^{p} d \mu\right)^{1 / p} \longrightarrow p$ norm of f
Basic inequalities:
Hölder inequality: Let $p, q>$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\int|f g| d \mu \leqslant\left(\int|f|^{p} d \mu\right)^{1 / p}\left(\int|g|^{q} d \mu\right)^{1 / q}
$$

Minkowski inequality:

$$
\|f+g\|_{p} \leqslant\|f\|_{p}+\|g\|_{p} \text { for all } p \geqslant 1 \text {. }
$$

Jensen inequality: Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be convex, i.e.

$$
p \varphi(x)+(1-p) \varphi(y) \geqslant \varphi(p x+(1-p) y)
$$

for all $\ll p \leqslant 1$ and $x, y \in \mathbb{R}$. Suppose f and $\varphi(f)$ are integrable. Then

$$
\varphi\left(\int f d \mu\right) \leqslant \int \varphi \circ f d \mu
$$

Pf. Write $c=\int f d \mu$.
Since ρ is convex, there exists a function

$$
l(x)=a x+b
$$

such that $l(c)=\varphi(c)$ and $\varphi(x) \geqslant \ell(x)$ for all $x \in \mathbb{R}$.
See the following picture

Hence

$$
\varphi(f(x)) \geqslant l(f(x))=a f(x)+b
$$

Taking integration gives

$$
\begin{aligned}
\int \varphi \circ f d \mu \geqslant \int(a f(x)+b) d \mu & =a \int f d \mu+b \\
& =\ell(c)=\varphi(c)
\end{aligned}
$$

Next we recall some convergence results:

- (Monotone convergence Thm) Let $f_{n}, n \geqslant 1$, be non-negative functions such that $f_{n} \mu f$ are. Then

$$
\int f_{n} d \mu \rightarrow \int f d \mu \text { as } n \rightarrow \infty
$$

- Fatou's lemma: Let $f_{n}, n \geqslant 1$, be non-neg-tive measurable functions. Then $\quad \lim _{n \rightarrow \infty} \int f_{n} d \mu \geqslant \int \frac{\lim _{n \rightarrow \infty} f_{n} d \mu \text {. } . \text {. }}{}$
- Dominated convergence The:

Suppose $\quad f_{n} \rightarrow f$ are and $\left|f_{n}\right| \leqslant g$ for all n and $\int g d \mu<\infty$. Then

$$
\int f_{n} d \mu \rightarrow \int f d \mu
$$

