Let
$$\beta(R)$$
 denote the Borel 5-algebra on \mathbb{R} . Each element in $\beta(R)$ is called a Borel set in \mathbb{R} .

Def. (Measurable space)
$$(\Omega, \mathcal{F})$$
 is called a measurable space if
 $\Omega \neq \phi$ and \mathcal{F} is a σ -algebra on Ω .

Def. (measure) A function
$$\mu: \mathcal{F} \to [o, \infty]$$
 is called a measure on (Ω, \mathcal{F}) if

(i)
$$\mu(\phi) = 0$$

(ii) $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{h=1}^{\infty} \mu(A_h)$ if

An, n≥1, are disjoint elements in 9.

Prop 1.1. Let 4 be a measure on (2, 7). Than

(i)
$$\mu(A) \leq \mu(B)$$
 if $A \subset B$ (monotonicity)
(ii) $\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n)$ for $A_n \in \mathcal{F}$. (Sub-additivity)
(iii) If $A_n \uparrow A$, then $\mu(A_n) \rightarrow \mu(A)$ as $n \rightarrow \infty$
(iv) If $A_n \lor A$ and $\mu(A_1) < \infty$, then (continuity from below)
 $\lim_{n \to \infty} \mu(A_n) = \mu(A)$. (continuity from above).

Def. • A triple
$$(\Box, \Im, \mu)$$
 is called a measure space if μ is
a measure on (\Box, \Im) .
• If $\mu(\Omega) = 1$, we call μ a prob. measure. Correspondingly,
 (\Box, \Im, μ) is called a prob. space.
Usually a prob. measure is denoted as P.
Example. (discrete prob. space)
Let Ω be a countable set. Let
 $\Im = 2^{\Omega} := \{A : A \in \Omega\}.$
Then (\Box, \Im) is a measurable space.
Let $\{P(\omega)\}_{\omega \in \Omega}$ be a prob. vector, i.e. $p(\omega) \ge 0$ and $\sum_{\omega \in \Omega} P(\omega) = 1$.
Define
 $p(A) = \sum_{\omega \in A} p(\omega)$ for all $A \in \Omega$.
Then (\Box, \Im, P) is a (discrete) prob. space.
Example (Borel measure on \mathbb{R}) A measure μ on $(\mathbb{R}, \beta(\mathbb{R}))$ is
called a Borel measure on \mathbb{R} .

Prop 1.2. Let
$$\mu$$
 be a Borel prob. measure on \mathbb{R} . Set

$$F(x) = \mu((-\infty, xI)) \quad \text{for } x \in \mathbb{R}.$$
Then
(1) F is non-decreasing, i.e. $F(x) \in F(x)$ if $x < y$.
(2) F is right-continuous, i.e.

$$\lim_{X \to xv} F(y) = F(x).$$

$$\frac{y > xv}{y > xv}$$
(3)
$$\lim_{X \to +\infty} F(x) = 1, \quad \lim_{X \to -\infty} F(x) = 0.$$
Pf. (1) is tivical. (2) \mathbb{R} (3) follow from the continuity property
of a prob. measure. **a**.
1.2 Random variables and their distributions.
Let $(-\Omega, \mathcal{F}, P)$ be a probability space.
Def. A function $X : \Omega \to \mathbb{R}$ is said to be \mathcal{F} -measurable
if $X'(A) \in \mathcal{F}$ for every Borel set $A \subseteq \mathbb{R}$.
If So, we call X a random variable (x, v) .
Example: • Let (Ω, \mathcal{F}, P) be a discrete prob. space.
Then any function $X : \Omega \to \mathbb{R}$ is • r.u.

Example: (Uniform distribution on
$$(0, 1)$$
)
• $f(x) = \begin{cases} 1 & \text{for } x \in (0, 1) \\ 0 & \text{otherwist} \end{cases}$
• $f(x) = \begin{cases} 1 & \text{if } x \ge 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$
(a) (exponential distribution with parameter λ)
• $f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$
• $f(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$
• $f(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$
• $f(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$
• $f(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x < 0 \\ 0 & \text{otherwise} \end{cases}$
• $f(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x < 0 \\ 0 & \text{if } x < 0 \end{cases}$
• $f(x) = \frac{1}{\sqrt{2\pi i}} e^{-\frac{-x^2}{2}}, x \in \mathbb{R}$.

Prop 14. If
$$X \cdot (\mathcal{L}, \mathcal{F}) \rightarrow (\mathcal{T}, \mathcal{T})$$

and $f \cdot (\mathcal{T}, \mathcal{T}) \rightarrow (\mathcal{U}, \mathcal{U})$ are measurable,
then so is $f(X): (\mathcal{L}, \mathcal{F}) \rightarrow (\mathcal{U}, \mathcal{U})$.

Pf. Let
$$A \in QL$$
. Then $f'(A) \in \mathcal{T}$. Thus
 $X'(f'(A)) \in \mathcal{F}$.
Hence $(f(X))'(A) = X'(f'(A)) \in \mathcal{F}$. 22

Extended real line IR* = [-w, w]
 Endow IR* with the topology generated by

Let $\beta(\mathbb{R}^*)$ denote the Borel σ -algebra on \mathbb{R}^* .

A measurable map $X: (\Omega, \mathcal{F}) \to (\mathbb{R}^*, \mathcal{G}(\mathbb{R}^*))$ is also called a random variable.

are all r.v.'s.

τ

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f: \Omega \rightarrow \mathbb{R}^*$ be measurable.

Then we can define

$$\int f d\mu = \int f^{\dagger} d\mu - \int f^{-} d\mu$$

if one of $\int f^{+} d\mu$, $\int f^{-} d\mu$ is finite.

 $i \wedge$

We call
$$f$$
 integrable if $\int |f| d\mu < \infty$, and write
 $f \in L^{1}(-\Omega, \mathcal{F}, \mu)$ or $L^{1}(\mu)$.
Moreover we write $f \in L^{0}(\mu)$ if $\int |f|^{p} d\mu < \infty$
and $\||S\||_{1} = C(C, \mu) = V_{p}$

 $ha || + ||_{p} = (\int |+|^{p} d\mu)^{p} \longrightarrow p \text{ norm of } f$

Basic inequalities :

Hölder inequality: Let
$$p, q > be such that $\frac{1}{p} + \frac{1}{q} = 1$. Then
 $\int |fg| d\mu \leq \left(\int |f|^{p} d\mu\right)^{\gamma_{p}} \left(\int |g|^{q} d\mu\right)^{\gamma_{q}}$$$

$$\frac{\text{Minkowski inequality}}{\|f+g\|_{p} \leq \|f\|_{p} + \|g\|_{p} \quad \text{for all } p \geq 1.$$

Jenson inequality: Let
$$g: \mathbb{R} \to \mathbb{R}$$
 be convex, i.e.
 $pg(x) + (i-p)g(x) \ge g(px+(i-p)y)$
for all exper and x, yell. Suppose f and $g(f)$ are
integrable. Then
 $g(\int f dH) \le \int g \circ f dH$.
Pf. Write $c = \int f dH$.
Since g is convex, there exists a function
 $l(x) = ax+b$
Such that $l(c) = g(c)$ and $g(x) \ge l(x)$ for all $x \in \mathbb{R}$.
See the following picture.
Hence
 $g(f cx) \ge l(f cx) = a f cx) + b$
Taking integration gives
 $\int g \circ f dH \ge \int (a f cx) + b) d\mu = a \int f du + b$
 $= l(c) = g(c).$