Lecture 8:
Recall: Linear Beltrami Solver (LBS)
Let $M=(V, E, F)$ be simply-connected domain $w /$ boundary.
Let $V=\left\{\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right), \ldots,\left(g_{i v 1}, h_{1 v_{1}}\right)\right\}$.
In discrete formulation, given $\mu=\rho+i \tau$, we want to Compute a resulting mesh M^{\prime} such that

$$
\begin{aligned}
& \text { resulting mesh } M^{\prime} \text { such that } \\
& v_{n}=\left(g_{n}, h_{n}\right) \mapsto w_{n}=\left(s_{n}, t_{n}\right)^{<} \text {vertices in } M^{\prime}
\end{aligned}
$$

On each face T, the discrete $Q C$ map f is linear.

$$
\begin{aligned}
& \left.\therefore \quad f\right|_{T}(x, y)=\binom{\left.u\right|_{T}(x, y)}{\left.v\right|_{T}(x, y)}=\binom{a_{T} x+b_{T} y+r_{T}}{c_{T} x+d_{T} y+s_{T}} \\
& \left.\therefore \quad u x\right|_{T}=a_{T} ;\left.\quad u_{y}\right|_{T}=b_{T} ;\left.\quad v x\right|_{T}=c_{T} ;\left.v_{y}\right|_{T}=d_{T}
\end{aligned}
$$

Consider the directional derivatives along $v_{j}-v_{i}$ and $v_{k}-v_{i}$, we get:

$$
\left(\begin{array}{ll}
a_{T} & b_{T} \\
c_{T} & d_{T}
\end{array}\right)\left(\begin{array}{ll}
g_{j}-g_{i} & g_{k}-g_{i} \\
h_{j}-h_{i} & h_{k}-h_{i}
\end{array}\right)=\left(\begin{array}{ll}
s_{j}-s_{i} & s_{k}-s_{i} \\
t_{j}-t_{i} & t_{k}-t_{i}
\end{array}\right) v_{i}
$$

Assume f is orientation-preserving, then:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
g_{j}-g_{i} & g_{k}-g_{i} \\
h_{j}-h_{i} & h_{k}-h_{i}
\end{array}\right)=2 \text { Area }(T) . \\
& \therefore\left(\begin{array}{ll}
a_{T} & b_{T} \\
c_{\tau} & d_{T}
\end{array}\right)=\frac{1}{2 A_{\text {real }}(T)}\left(\begin{array}{cc}
S_{j}-S_{i} & S_{k}-S_{i} \\
t_{k}-t_{i} & A_{k}-t_{i}
\end{array}\right)\left(\begin{array}{ll}
h_{k}-h_{i} & g_{i}-g_{k} \\
h_{i}-h_{j} & g_{j}-g_{i}
\end{array}\right) \\
&\left(\begin{array}{ll}
a_{T} & b_{T} \\
c_{\tau} & d_{T}
\end{array}\right)=\left(\begin{array}{ll}
A_{T}^{i} S_{i}+A_{T}^{j} S_{j}+A_{T}^{k} S_{k} & B_{T}^{i} S_{i}+B_{T}^{j} S_{j}+B_{T}^{k} S_{k} \\
A_{T}^{i} A_{i}+A_{T}^{j} t_{j}+A_{T}^{k} t_{k} & B_{T}^{i} t_{i}+B_{T}^{j} t_{j}+B_{T}^{k} t_{k}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{cc}
a_{T} & b_{T} \\
c_{T} & d_{T}
\end{array}\right] } & =\frac{1}{2 \cdot \operatorname{Area}(T)}\left[\begin{array}{cc}
s_{j}-s_{i} & s_{k}-s_{i} \\
t_{j}-t_{i} & t_{k}-t_{i}
\end{array}\right]\left[\begin{array}{cc}
h_{k}-h_{i} & g_{i}-g_{k} \\
h_{i}-h_{j} & g_{j}-g_{i}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{T}^{i} s_{i}+A_{T}^{j} s_{j}+A_{T}^{k} s_{k} & B_{T}^{i} s_{i}+B_{T}^{j} s_{j}+B_{T}^{k} s_{k} \\
A_{T}^{i} t_{i}+A_{T}^{j} t_{j}+A_{T}^{k} t_{k} & B_{T}^{i} t_{i}+B_{T}^{j} t_{j}+B_{T}^{k} t_{k}
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{ccc}
A_{T}^{i}=\left(h_{j}-h_{k}\right) / 2 \cdot \operatorname{Area}(T) ; & A_{T}^{j}=\left(h_{k}-h_{i}\right) / 2 \cdot \operatorname{Area}(T) ; & A_{T}^{k}=\left(h_{i}-h_{j}\right) / 2 \cdot \operatorname{Area}(T) \\
B_{T}^{i}=\left(g_{k}-g_{j}\right) / 2 \cdot \operatorname{Area}(T) ; & B_{T}^{j}=\left(g_{i}-g_{k}\right) / 2 \cdot \operatorname{Area}(T) ; & B_{T}^{k}=\left(g_{j}-g_{i}\right) / 2 \cdot \operatorname{Area}(T)
\end{array}
$$

Now, define: $\operatorname{Div}(\underbrace{X_{1}, X_{2}}_{\vec{V}=\left(X_{1}, X_{2}\right)})\left(v_{i}\right)=\sum_{T \in N_{i}} \operatorname{Area}(T) \cdot A_{T}^{i} X_{1}(T)+\operatorname{Area}(T) \cdot B_{T}^{i} X_{2}(T)$ vector field defined All facousd v_{i} on each face T
Easy to check: $\operatorname{Div}\left(-d_{l}, c_{n}\right)=\sum_{T \in N_{i}}-\operatorname{Area}(T) A_{T}^{i}\left(B_{T}^{i} t_{i}+B_{T}^{j} t_{j}+B_{T}^{k} t_{k}\right)$

$$
\begin{aligned}
& \begin{aligned}
& \\
&-v_{y}^{\prime \prime} \quad \prime \\
& v_{x}=0 \\
&=A_{r e a}(T) B_{T}^{i}\left(A_{T}^{i} t_{i}+A_{T}^{j} t_{j}+A_{T}^{k} t_{k}\right) \\
&
\end{aligned} \\
& =0
\end{aligned}
$$

Similarly, $\operatorname{Div}(-b, a)=0$

Recall that:

$$
\begin{aligned}
\binom{-v_{y}}{v_{x}} & =\underbrace{\frac{1}{1-\rho^{2}-\tau^{2}}\left(\begin{array}{cc}
1-\rho & -\tau \\
-\tau & \rho+1
\end{array}\right)\left(\begin{array}{cc}
\rho-1 & \tau \\
\tau & -(\rho+1)
\end{array}\right)\binom{u_{x}}{u_{y}}}_{A} \\
\Rightarrow\binom{-v_{y}}{v_{x}} & =A\binom{u_{x}}{u_{y}}
\end{aligned}
$$

$\therefore \operatorname{Div}\left(A\binom{u_{x}}{u_{y}}\right)=0$ to solve for u with
suitable boundary conditions $\left(\Leftrightarrow \operatorname{Div}\left\{A\left[\begin{array}{c}B_{T}^{i} s_{i}+B_{T}^{j} s_{j}+B_{T}^{k} s_{k} \\ B_{T}^{i} t_{i}+B_{T}^{j} t_{j}+B_{T}^{k} t_{k}\end{array}\right]\right\}=0\right)$
(If $M=[0,1] \times[0,1]$, we set $\begin{aligned} & u=0 \text { on the left } \\ & u=1 \text { on the rightary }\end{aligned}$ and $M^{\prime}=[0,1] \times[0, h]$ $u=1$ on the right for some h

Once x is determined, we can determine

$$
h=\sum_{T}\left(\alpha_{T}\left(u_{x}\right)_{T}^{2}+2 \beta+\left(u_{x}\right)_{T}\left(u_{y}\right)_{T}+\gamma_{T}\left(u_{y}\right)_{T}{ }^{2}\right)
$$

v can be determined by solving:

$$
\operatorname{Div}\left(A\binom{v_{x}}{v_{y}}\right)=0
$$

with boundary conditions: $v=0$ on the bottom boundary $v=h$ on the upper boundary.

Remark: In case landmark constraints are imposed, we can solve:

$$
\operatorname{Div}\left(A\binom{u_{x}}{u_{y}}\right)=0 \text { and } \operatorname{Div}\left(A\binom{v_{x}}{v_{y}}\right)=0
$$

subject to $u\left(p_{i}\right)=q_{i}^{u}$ and $v\left(p_{i}\right)=q_{i}^{v}$ for $i=1,2, \ldots, m$ (by substituting them into the linear system) where $\left\{p_{i}\right\}_{i=1}^{m} \leftrightarrow\left\{q_{i}=q_{i}^{u}+i q_{i}^{v}\right\}_{i=1}^{m}$ denotes the landmark corresponding. It gives a q.c. map whose $B C$ is close to μ. (not exactly same)
$\beta\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{j} * q_{j} \\ u_{N} \\ u_{N}\end{array}\right)=0$ and $\Rightarrow B, \vec{u}=\vec{b}$, etc...

Fixing conformality distortion for Fast Spherical Conformal Parameterigation
Recall: Given genus- 0 mesh $M=(V, E, F)$, we can take away one small triangle " (V_{0} treat it as north pole) and map it to big triangle ${ }^{T}(w \mid$ same angle structure as $\Delta)$ by solving:

$$
\sum_{\left[v_{i}, v_{j}\right] \in E} w_{i j}\left(f\left(v_{j}\right)-f\left(v_{i}\right)\right)=0 \quad \text { subject to the }
$$

constraint that $f\left(v_{0}\right)=p_{0} \in \mathbb{C}, f\left(v_{1}\right)=p_{1} \in \mathbb{C}$ and $f\left(v_{2}\right)=p_{2} \in \mathbb{C}$. (f is a piecewise linear map from M to \mathbb{C})
(Linear system $=$ fast $)$

Drawback: Conformality near the origin is small but conformality near the boundary is BIG!!
Strategy:

Then: $\phi \circ g^{-1}=\mathbb{S}^{2} \rightarrow M$
has $B . C=0$ and hence conformal!!
Computing $g: S^{2} \rightarrow S^{2}$ involves conformal
 chart. Use stereographic projection!!

Detailed computation:

Solve:

$$
\operatorname{Div}\left(A\binom{\tilde{u}_{x}}{\tilde{u}_{y}}\right)=0 \text { and } \operatorname{Div}\left(A\binom{\tilde{v}_{x}}{\left.\tilde{v}_{y}\right)}\right)=0
$$

Subject to $\tilde{g}\left(p_{j}\right)=q_{j}$ for $j=1,2$,
Then: $\tilde{\phi} \circ \tilde{g}^{-1} \circ \tau_{s}$ has less conformality distortion near north pole!

$\tau_{S}^{-1} \downarrow$ Sooth pole inverere
 distortion fixed

Bettrami Holomorphic Flow (Bojarski)
Theorem: (Beltrami Holomorphic flow on 8^{2}) There is a one-to-one correspondence between the set of quasiconformal diffeomorphisms of 8^{2} that fix the points 0,1 and ∞ and the ret of smooth complex-valued functions μ on δ^{2} with $\|\mu\|_{\infty}=k<1$. (Here, we identify \mathbb{S}^{2} with extended complex plane $\overline{\mathbb{C}}$).
Also, the solution to the Beltrami's eft depends holomorphically on μ. Let $\{\mu(t)\}$ be a family of Bettrami coefficient depending on a real/ complex t. Let $\mu(t)(z)=\mu(z)+t v(z)+t \varepsilon(t)(z)$ and $\|\varepsilon(t)\|_{\infty} \rightarrow 0$ as $t \rightarrow 0$. Then: for $\forall \omega \in \mathbb{C}, \quad$ for $z \in \mathbb{C}$ $f^{\mu(t)}(w)=f^{\mu}(w)+t V\left(f^{\mu}, \nu\right)(w)+o(|t|)$ locally uniformly on \mathbb{C} as $t \rightarrow 0$, where $V\left(f^{\mu}, v\right)(w)=\frac{-f^{\mu}(w)\left(f^{\mu}(w)-1\right)}{\pi} \int_{\mathbb{C}} \frac{\nu(z)\left(\left(f^{\mu}\right) z(z)\right)^{2} d x d y}{f^{\mu}(z)\left(f^{\mu}(z)-1\right)\left(f^{\mu}(z)-f^{\mu}(w)\right)}$

BHF algorithm Let $M=$ genus -0 mesh
$N=$ genus -0 mesh.
Let $\phi_{1}: M \rightarrow \mathbb{S}^{2} \cong \overline{\mathbb{C}}$ and $\phi_{2}: N \rightarrow S^{2} \cong \overline{\mathbb{C}}$ be global conformal parametrization of M and N respectively.
Given $\mu: M \rightarrow \mathbb{C}$, consider $\tilde{\mu}=\mu_{0} \phi_{1}^{-1}: \mathbb{S}^{2} \rightarrow \mathbb{C}$.
Goal: Construct $\tilde{g}=\underset{\text { sin }}{\mathbb{S}^{2}} \rightarrow{\underset{\text { Sin }}{ }}_{2}^{\text {Gin }} \rightarrow$ B.c. of $\tilde{g}=\tilde{\mu}$
(under "north pole" stereographic
Identify $\&^{2}$ with $\overline{\mathbb{C}}$. Define: $\tilde{\mu}_{k}=k \tilde{\mu} / N, k=0,1,2, \ldots N$
Let $\tilde{f}^{\tilde{\mu}_{k}}=Q . C$. map associated with $\tilde{\mu}_{k}$.
$\therefore \tilde{f}^{\tilde{\mu}_{0}}=I d$ (assuming $0,1, \infty$ are fixed)

Proceed to construct:

$$
\begin{gathered}
\tilde{\mu}_{0}^{\text {construct: }} \rightarrow \tilde{\mu}_{1} \rightarrow \tilde{\mu}_{2} \rightarrow \ldots \rightarrow \tilde{\mu}_{k} \rightarrow \ldots \rightarrow \tilde{\mu}_{N}=\tilde{\mu} \\
\tilde{\downarrow} \rightarrow \underset{\downarrow}{\tilde{\mu}} \\
\tilde{\tilde{\mu}}^{\tilde{\mu}_{0}} \rightarrow \tilde{f}^{\tilde{\mu}_{1}} \rightarrow \tilde{f}^{\tilde{\mu}_{2}} \rightarrow \ldots \rightarrow \tilde{f}^{\tilde{\mu}_{k}} \rightarrow \ldots \rightarrow \tilde{f}^{\tilde{\mu}_{N}}=\tilde{g}
\end{gathered}
$$

Note that the above diagram can be realized iteratively by:

$$
\left\{\begin{array}{l}
\tilde{f}^{\tilde{\mu}_{0}}=I d \\
\tilde{f}^{\tilde{\mu}_{k+1}}=\tilde{f}^{\tilde{\mu}_{k}}+\vec{V}\left(\tilde{f}^{\tilde{\mu}_{k}}, \frac{\tilde{\mu}}{N}\right)
\end{array}\right.
$$

where

$$
\stackrel{\rightharpoonup}{V}\left(f^{\mu}, v\right)=-\int_{\mathbb{C}} \frac{f^{\mu}(w)\left(f^{\mu}(w)-1\right)}{\pi}\left(\frac{v(z)\left(\left(f^{\mu}\right)_{z}(z)\right)^{2}}{f^{\mu}(z)\left(f^{\mu}(z)-1\right)\left(f^{\mu}(z)-f^{\mu}(w)\right)}\right)_{\text {(area) }} d x d y
$$

In discrete case, $\stackrel{\rightharpoonup}{V}\left(f^{\mu}, v\right)$ can be discretized as: $\sum_{v} k(v, \omega) A_{v}$

Algorithm Reconstruction of Surface Diffeomorphisms from BCs
Input: Beltrami Coefficient μ on S_{1}; conformal parameterizations of S_{1} and $S_{2}: \phi_{1}$ and ϕ_{2}; Number of iterations N
Output: Surface diffeomorphism $f^{\mu}: S_{1} \rightarrow S_{2}$ associated to μ.

1) Set $k=0 ; \widetilde{f}^{\tilde{\mu}_{0}}=\mathbf{I d}$.
2) Set $\widetilde{\mu}_{k}:=k \widetilde{\mu} / N$; Compute $\widetilde{f}^{\tilde{\mu}_{k+1}}=\widetilde{f}^{\tilde{\mu}_{k}}+V\left(\widetilde{f}^{\tilde{\mu}_{k}}, \frac{\widetilde{\mu}}{N}\right) ; k=k+1$.
3) Repeat Step 2 until $k=N$; Set $f^{\mu}:=\phi_{2}^{-1} \circ \widetilde{f^{\mu}} \circ \phi_{1}: S_{1} \rightarrow S_{2}$.

Remark: Can be used to solve optimization problem of mappings represented by Beltrami coefficients.

Beltrami Coefficient

15 Iterations

20 Iterations

We can find the associated $Q C$ map $\tilde{f}=f^{k}+\vec{V}_{2} \rightarrow$

$$
\frac{\partial \tilde{f}}{\partial \bar{z}}=\tilde{\nu} \frac{\partial \tilde{f}}{\partial z}
$$

Overall, the descent direction to optimize:

$$
\frac{d f^{k}}{d t}=\vec{V}_{1}+\vec{V}_{2}
$$

