Lecture 7
Definition: (Quasiconformal map) Let $f=\mathbb{C} \rightarrow \mathbb{C}$ be a C^{\prime} homeomorphism. f is called a quasi-conformal map with respect to a complex-valued function $\mu: \mathbb{C} \rightarrow \mathbb{C}$, called the Beltrami coefficient, with $\|M\|_{\infty}<1$ if:

$$
\begin{gathered}
\text { (*) } \frac{\partial f}{\partial \bar{z}}(z)=\mu(z) \frac{\partial f}{\partial z} \text { where } \\
\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) \text { and } \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)
\end{gathered}
$$

$\mu(z)$ measures the local geometric distortion at z. $(*)$ is called the Beltrami's equation

Remark: 1. When $\mu \equiv 0$, the Beltrami's equation is reduced to the Canchy-Riemann equation. Let $f=u+i v\left(\begin{array}{l}u, v \\ \text { real }\end{array}\right.$ functions)
Then: $\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}(u+i v)-i \frac{\partial}{\partial y}(u+i v)\right)$

$$
\Rightarrow \begin{aligned}
& \partial z \\
&=\frac{1}{2}\left(\left(u_{x}+v_{y}\right)+i\left(v_{x}-u_{y}\right)\right)=0 \\
& u_{x}=-v_{y} \\
& u_{y}=+v_{x}
\end{aligned}(\text { (cauchy - Riemann eqt) }
$$

2. In matrix form, a conformal/holomorpluic complex-value function $f=u+i v$ satisfies:

$$
D f(z)=\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\begin{array}{cc}
u_{x} & -v_{x} \\
v_{x} & u_{x}
\end{array}\right)
$$

or $\binom{-v_{y}}{v_{x}}=\left(\begin{array}{cc}+1 & 0 \\ 0 & +1\end{array}\right)\binom{u_{x}}{u_{y}}$. $\quad(* *)$
Quasi-conformal map generalizes $\left(*_{*}\right)$ by considering

$$
\binom{-v_{y}}{v_{x}}=\underbrace{\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)}\binom{u_{x}}{u_{y}} \quad \text { for some } \alpha, \beta \text { and } \gamma
$$ depending on μ.

Represent the metric distortion
3. Let $J(z)=$ Jacobian of $f=u+i v$ at z.

Then $J=\operatorname{det}\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)=u_{x} v_{y}-u_{y} v_{x}$

$$
\begin{gathered}
=\quad\left(u_{x} v_{y}-u_{y} v_{x}\right)=J(z) \\
\therefore J(z)=\left|\frac{\partial f}{\partial z}\right|^{2}\left(1-\left|\frac{\partial f}{\partial z}\right|^{2} /\left|\frac{\partial f}{\partial z}\right|^{2}\right)=\left|\frac{\partial f}{\partial z}\right|^{2}\left(1-\left(\left.\mu(z)\right|^{2}\right)\right.
\end{gathered}
$$

Thus, if $\|\mu(z)\|_{\infty}<1$ and $\left|\frac{\partial f}{\partial z}\right| \neq 0 \quad(f=$ homeomorphism $)$ then $J(z)>0$ everywhere. $\therefore f$ is orientation-preserving every where
Existence and Uniqueness Theorem
Theorem: (Measurable Riemann mapping theorem) Suppose $\mu=\mathbb{C} \rightarrow \mathbb{C}$ is Lebesgue measurable and satisfies $\|\mu\|_{\infty}<1$, then there exists a quasi-conformal homeomorphism ϕ from \mathbb{C} onto itself, which is in the Sobolev space $W^{1,2}(\mathbb{C})$ and satisfies the Beltrami equation $\left(\frac{\partial f}{\partial z}=\mu(z) \frac{\partial f}{\partial z}\right)$ is the distribution sense. Also, by fixing $0,1, \infty$, the associated quasiconformal homeomorphism ϕ is uniquely determined.

Theorem: Suppose $\mu: \mathbb{D} \rightarrow \mathbb{C}$ is Lebesgue measurable and satisfies $\|M\|_{\infty}<1$. Then, there exists a quasiconformal homeomorphism ϕ from ID to itself, which is in the Sobolev space $W^{1,2}(\Omega)$ and satisfies the Beltrami equation in the distribution sense. Also, by fixing 0 and $1, \phi$ is uniquely determined.
Proof: Follows from previous the by reflection. (Based on Beltrami holomorphic flow Later!)

Composition of quasiconformal maps
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ and $g=\mathbb{C} \rightarrow \mathbb{C}$ be quasiconformal maps. Then, the Beltrami coefficient of the composition map $g \circ f$ is given by:

$$
\mu_{g} \circ f(z)=\frac{\mu_{f}(z)+\overline{f_{z}}(z) / f_{z}(z)\left(\mu_{g} \circ f\right)}{1+\overline{f_{z}}(z) / f_{z}(z) \overline{\mu_{f}}\left(\mu_{g} \circ f\right)}
$$

Theorem: Let $f: \Omega_{1} \rightarrow \Omega_{2}$ and $g: \Omega_{2} \rightarrow \Omega_{3}$ be quasiconformal maps. Suppose the Bettrami coefficients of f^{-1} and g are the same. Then the Beltrami coefficient of g of is equal to 0 and $g \circ f$ is conformal.
Proof: Note that: $\mu_{f^{-1}}$ of $=-\left(f_{z} /\left|f_{z}\right|\right) \mu_{f}$.
$\because M_{f^{-1}}=M_{g}$, we have:

$$
\begin{aligned}
\mu_{f}+\left(\bar{f}_{z} / f_{z}\right)\left(\mu_{g} \circ f\right) & =\mu_{f}+\left(\bar{f}_{z} / f_{z}\right)\left(\mu_{f^{-1}} \circ f\right) \\
& =\mu_{f}+\left(\bar{f}_{z} / f_{z}\right)\left(-\frac{f_{z}}{\bar{f}_{z}}\right) \mu_{f}=0
\end{aligned}
$$

By the composition formula, $\mu_{g \circ f}=0$ and so $g \circ f$ is conformal.
Remark: The above theorem gives a useful way to fix conformality distortion.
(A)

(B)

ID $\xrightarrow[\Omega]{f, \mu}$

$$
\downarrow g, \mu
$$

ID fog is conformal

In depth analysis of Beltrami's equation
Let $f=u+i v$ and $\mu=\rho+i \tau$. Comparing the real and imaginary parts of $\frac{\partial f}{\partial \bar{z}}=\mu \frac{\partial f}{\partial z}$ gives:

$$
\left(\begin{array}{cc}
\rho-1 & \tau \\
\tau & -(\rho+1)
\end{array}\right)\binom{u_{x}}{u_{y}}=\left(\begin{array}{cc}
\rho+1 & \tau \\
\tau & 1-\rho
\end{array}\right)\binom{-v_{y}}{v_{x}}
$$

$\because\|\mu\|_{\infty}<1, \quad \operatorname{det}\left(\begin{array}{cc}p+1 & \tau \\ \tau & 1-p\end{array}\right)=1-p^{2}-\tau^{2}>0$ for $\forall z \in \Omega$.

$$
\therefore\binom{-v_{y}}{v_{x}}=\frac{1}{1-\rho^{2}-\tau^{2}}\left(\begin{array}{cc}
1-\rho & -\tau \\
-\tau & \rho+1
\end{array}\right)\left(\begin{array}{cc}
\rho-1 & \tau \\
\tau & -(\rho+1)
\end{array}\right)\binom{u_{x}}{u_{y}}
$$

Denote $C=\left(\begin{array}{cc}\rho-1 & \tau \\ \tau & -(p+1)\end{array}\right)$. We get $\binom{-v_{y}}{v_{x}}=\frac{-1}{1-p^{2}-\tau^{2}} C^{\top} C\binom{u_{x}}{u_{y}}$

$$
\begin{aligned}
& \text { where }-A=\frac{-1}{1-\rho^{2}-\tau^{2}}\left(\begin{array}{cc}
1-\rho & -\tau \\
-\tau & \rho+1
\end{array}\right)\left(\begin{array}{cc}
\rho-1 & \tau \\
\tau & -(p+1)
\end{array}\right)=\frac{-1}{1-\rho^{2}-\tau^{2}}\left(\begin{array}{cc}
-(1-\rho)^{2}-\tau^{2} & 2 \tau \\
2 \tau & -\tau^{2}-(p+1)^{2}
\end{array}\right)
\end{aligned}
$$

Area distortion under quasi-conformal map
To simplify our discussion, let $f:[0,1] \times[0,1] \rightarrow \Omega \subseteq \mathbb{C}$.
(\because Area of source domain R is 1) R
Now, area of $\Omega=\int_{R} J(z) d z$

$$
=\int_{R}\left(u_{x} v_{y}-v_{x} u_{y}\right) d z
$$

$$
\begin{aligned}
\therefore \text { Area of } \Omega & =\int_{R} u_{x}\left(\alpha u_{x}+\beta u_{y}\right)+\left(\beta u_{x}+\gamma u_{y}\right) u_{y} \\
& =\int_{R} \alpha u_{x}^{2}+2 \beta u_{x} u_{y}+\gamma u_{y}^{2}
\end{aligned}
$$

Where α, β and γ are determined by $\mu=\rho+i \tau$.

Remark: • $\mu($ or $\alpha, \beta, \gamma)$ introduces area distortion under f

- Computationally, once u associated to μ is obtained, we can determine the area of the target domains by

$$
A=\int_{R} \alpha u_{x}^{2}+2 \beta u_{x} u_{y}+\gamma u_{y}^{2}
$$

If $\Omega=[0,1] \times[0, h]$, then $h=A$.
\therefore Once u is computed, the geometry of the target domain can be determined.
$\therefore v$ can be computed (Useful observation!)

Computation of $Q C$ maps
Goal: Given μ, our goal is to compute q.c. map f associated to μ.

Method 1: (Simple least square method)
Minimize the residual of the Beltrami's eft

$$
E(f)=\int_{\Omega}\left|\frac{\partial f}{\partial \bar{z}}-\mu \frac{\partial f}{\partial z}\right|^{2} d z
$$

Method 2: $\frac{\partial f}{\partial \bar{z}}=\mu \frac{\partial f}{\partial z} \underset{\text { formulation }}{\sim}$ Energy minimization model formulation (not least so model) $\}$
Solving elliptic $P D E$ will give "smoothness" of
Solving ecliptic give smoothness" of the solution

Method 3: Beltrami Holomorphic Flow
Goal: given μ, want to set f^{μ} associated to μ.

$$
\begin{aligned}
& 0 \rightarrow \frac{\mu}{N} \rightarrow \frac{2 M}{N} \rightarrow--\mu \\
& \uparrow \psi \psi \\
& \downarrow \\
& \text { bis) } \\
& \text { Id } \rightarrow f_{\sim}^{\mu} \rightarrow f_{x^{\text {small }}}^{2 \mu / \mu} \rightarrow f^{\mu} \\
& \text { If } \\
& \begin{array}{l}
\tilde{\mu}=\mu+w^{x^{\text {small }}} \\
f^{\tilde{\mu}}=f^{\mu}+\vec{V}(w)
\end{array}
\end{aligned}
$$

Simple way to compute QC map
Goal: Given μ, our goal is to compute the associated $Q C$ map.
Idea: Minimize the residual of Beltrami's eq:

$$
E(f)=\int_{\Omega}\left|\frac{\partial f}{\partial \bar{z}}-\mu \frac{\partial f}{\partial z}\right|^{2} d z
$$

Let $M=(V, E, F)$ be triangular mesh and f be piecewise linear function. Choose a face $\left[v_{1}, v_{2}, v_{3}\right] \in F$ and embed it on \mathbb{R}^{2}.
Let the planar coordinate of v_{k} be $\left(x_{k}, y_{k}\right)$.
Let $f:(x, y) \mapsto(u(x, y), v(x, y))$.
As before,

$$
\begin{aligned}
& (x, y) \mapsto(u(x, y), v(x, y)) . \\
& \text { ore, }\left\{\begin{array}{l}
\nabla u=u_{1} \overrightarrow{s_{1}}+u_{2} \overrightarrow{s_{2}}+u_{3} \overrightarrow{s_{3}} \\
\nabla v=v_{1} \overrightarrow{s_{1}}+v_{2} \vec{s}_{2}+v_{3} \vec{s}_{3}
\end{array}\right. \\
& u_{1}=u\left(v_{1}\right), u_{2}=u\left(v_{2}\right) \text {, etc... }
\end{aligned}
$$

Then, $u_{x}, u_{y}, v_{x}, v_{y}$ are constants on each face.
$\therefore \mu$ is piecewise constant function on each face T, namely,

$$
\mu(T)=\rho_{T}+i \tau_{T}
$$

We can check that the Beltrami's eqt is equivalent to:

$$
\left\{\begin{array}{l}
\vec{p}_{T} \cdot \nabla u+\vec{q}_{T} \cdot \nabla v=0 \\
-\vec{q}_{T} \cdot \nabla u+\vec{p}_{T} \cdot \nabla v=0
\end{array} \quad \text { where } \vec{p}_{T}=\binom{p_{T}-1}{\tau_{T}}, \vec{q}_{T}=\binom{-\tau_{T}}{p_{T}+1}\right.
$$

Rewriting: $\left(\begin{array}{cccccc}\lambda_{1} & \lambda_{2} & \lambda_{3} & \gamma_{1} & \gamma_{2} & \gamma_{3} \\ -\gamma_{1} & -\gamma_{2} & -\gamma_{3} & \lambda_{1} & \lambda_{2} & \lambda_{3}\end{array}\right)\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ v_{1} \\ v_{2} \\ v_{3}\end{array}\right)=\overrightarrow{0} \quad$ where

$$
\lambda_{k}=\vec{p} \cdot \vec{S}_{k}, \quad \gamma_{k}=\vec{q} \cdot \vec{S}_{k}, \quad k=1,2,3
$$

For each face, we can construct a linear system.
Pack all linear equations together to form a big linear system:

$$
\left(\begin{array}{cc}
\Lambda & \Gamma \\
-P & \Lambda
\end{array}\right)\binom{\vec{u}}{\vec{v}}=\overrightarrow{0} \text { where } \vec{u}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right) ; \vec{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)
$$

by minimizing: $\left\|\left(\begin{array}{ll}\Omega & \Gamma\end{array}\right)(\vec{u})\right\|^{2}$ coordinate values at different vertices.
subject to some boundary conditions! (Standard least square problem)
Remark: The method is equivalent to minimizing:

$$
\int_{\Omega}\left|\frac{\partial f}{\partial \bar{z}}-\mu \frac{\partial f}{\partial z}\right|^{2} \quad \text { (Least square Beltrami energy) }
$$

Drawback: 1. May get trapped in local minimum
2. Resulting map may just be immersion ($w /$ Self-overlap)

Another method to solve Beltrami's equation
Linear Beltrami Solver (LBS)
Let $M=(V, E, F)$ be simply-connected domain $w /$ boundary.
Let $V=\left\{\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right), \ldots,\left(g_{i v 1}, h_{1 v_{1}}\right)\right\}$.
In discrete formulation, given $\mu=\rho+i \tau$, we want to Compute a resulting mesh M^{\prime} such that

$$
\begin{aligned}
& \text { esulting mesh } M^{\prime} \text { such that } \\
& v_{n}=\left(g_{n}, h_{n}\right) \mapsto w_{n}=\left(s_{n}, t_{n}\right)^{<} \text {vertices in }
\end{aligned}
$$

On each face T, the discrete $Q C \operatorname{map} f$ is linear.

$$
\begin{aligned}
& \left.\therefore \quad f\right|_{T}(x, y)=\binom{\left.u\right|_{T}(x, y)}{\left.v\right|_{T}(x, y)}=\binom{a_{T} x+b_{T} y+r_{T}}{c_{T} x+d_{T} y+s_{T}} \\
& \left.\therefore \quad u x\right|_{T}=a_{T} ;\left.\quad u_{y}\right|_{T}=b_{T} ;\left.\quad v x\right|_{T}=c_{T} ;\left.v_{y}\right|_{T}=d_{T}
\end{aligned}
$$

Consider the directional derivatives along $v_{j}-v_{i}$ and $v_{k}-v_{i}$, we get:

$$
\left(\begin{array}{ll}
a_{T} & b_{T} \\
c_{T} & d_{T}
\end{array}\right)\left(\begin{array}{ll}
g_{j}-g_{i} & g_{k}-g_{i} \\
h_{j}-h_{i} & h_{k}-h_{i}
\end{array}\right)=\left(\begin{array}{ll}
s_{j}-s_{i} & s_{k}-s_{i} \\
t_{j}-t_{i} & t_{k}-t_{i}
\end{array}\right) v_{i}
$$

Assume f is orientation-preserving, then:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
g_{j}-g_{i} & g_{k}-g_{i} \\
h_{j}-h_{i} & h_{k}-h_{i}
\end{array}\right)=2 \text { Area }(T) . \\
& \therefore\left(\begin{array}{ll}
a_{T} & b_{T} \\
c_{\tau} & d_{T}
\end{array}\right)=\frac{1}{2 A_{\text {real }}(T)}\left(\begin{array}{cc}
S_{j}-S_{i} & S_{k}-S_{i} \\
t_{k}-t_{i} & A_{k}-t_{i}
\end{array}\right)\left(\begin{array}{ll}
h_{k}-h_{i} & g_{i}-g_{k} \\
h_{i}-h_{j} & g_{j}-g_{i}
\end{array}\right) \\
&\left(\begin{array}{ll}
a_{T} & b_{T} \\
c_{\tau} & d_{T}
\end{array}\right)=\left(\begin{array}{ll}
A_{T}^{i} S_{i}+A_{T}^{j} S_{j}+A_{T}^{k} S_{k} & B_{T}^{i} S_{i}+B_{T}^{j} S_{j}+B_{T}^{k} S_{k} \\
A_{T}^{i} A_{i}+A_{T}^{j} t_{j}+A_{T}^{k} t_{k} & B_{T}^{i} t_{i}+B_{T}^{j} t_{j}+B_{T}^{k} t_{k}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{T} & b_{T} \\
c_{T} & d_{T}
\end{array}\right]=\frac{1}{2 \cdot A r e a(T)}\left[\begin{array}{lll}
s_{j}-s_{i} & s_{k}-s_{i} \\
t_{j}-t_{i} & t_{k}-t_{i}
\end{array}\right]\left[\begin{array}{lll}
h_{k} & h_{i} & g_{i}-g_{k} \\
h_{i}-h_{j} & g_{j}-g_{i}
\end{array}\right]}
\end{aligned}
$$

where

$$
\begin{array}{cll}
A_{T}^{i}=\left(h_{j}-h_{k}\right) / 2 \cdot \operatorname{Area}(T) ; & A_{T}^{j}=\left(h_{k}-h_{i}\right) / 2 \cdot \operatorname{Area}(T) ; & A_{T}^{k}=\left(h_{i}-h_{j}\right) / 2 \cdot \operatorname{Area}(T) \\
B_{T}^{i}=\left(g_{k}-g_{j}\right) / 2 \cdot \operatorname{Area}(T) ; & B_{T}^{j}=\left(g_{i}-g_{k}\right) / 2 \cdot \operatorname{Area}(T) ; & B_{T}^{k}=\left(g_{j}-g_{i}\right) / 2 \cdot \operatorname{Area}(T)
\end{array}
$$

Next tine, we will define: discrete divergence such that

$$
\begin{gathered}
\cdot \operatorname{Div}\left(\begin{array}{cc}
-d_{T}, & c_{T} \\
\| & 11 \\
-\left.v_{y}\right|_{T} & \left.v_{x}\right|_{T}
\end{array}\right. \\
\cdot \operatorname{Div}\left(\begin{array}{cc}
-b_{T}, & a_{T}
\end{array}\right)=0
\end{gathered}
$$

With that

$$
-\left.\left.u_{y}^{\prime \prime}\right|_{T} \ddot{u}_{x}\right|_{T}
$$

$$
\theta=\operatorname{Div}\left(\binom{-d_{T}}{c_{T}}\right)=\operatorname{Div}\left(\left(\begin{array}{cc}
\alpha_{T} & \beta_{T} \\
\beta_{T} & \gamma_{T}
\end{array}\right)\binom{a_{T}}{b_{T}}\right)
$$

