Computation of disk conformal parameterization
Goal: Given a simply-connected surface $S$, find $\phi: S \rightarrow \mathbb{D}$
Challenge: Cannot get it by computing harmonic map.
(Given a boundary homeomorphism $h: \partial S \rightarrow \partial D$, there exist a unique harmonic map $H: S \rightarrow \mathbb{D} \rightarrow H_{\partial S}=h$. Amongst them, only few of them are conformal w/ suitable boundary conditions)

Idea: (Double covering)

- Let $M=(V, E, F)$, construct $\tilde{M}=(V, \tilde{E}, \tilde{F})$ which is a "reflected" copy of $M(\tilde{F}$ has opposite orientation as $F)$.
- Glue them along the boundary.
- $M \cup \tilde{M}=\bar{M}$ becomes a genus- 0 closed surface

- $\tilde{M}$ can be parameterized onto $S^{2}$ using the previous algorithm.

Problem:

$$
\bar{M} \xrightarrow{f}
$$


$f(\partial M)$ may not be on the equator.
$\because \bar{M}$ is a symmetric surface, $\exists$ a conformal map $h: \bar{M} \rightarrow \overline{\mathbb{C}}$ such that $h(\partial M)=\partial I D$.
Solution: Picking $v_{0}, v_{1}, v_{2}$ on $\partial M$. Reparameterize $\phi_{0}$ of by a Mobins Transformation $\tau$ such that $h=\tau \cdot \phi \cdot f$ maps $v_{0}, v_{1}, v_{2}$ to $0,1, i$ respectively.
e.g. $z_{0}, z_{1}, z_{2}$ to $0,1, \infty$ can be done by, $\tau_{1}=\frac{\left(z-z_{0}\right)\left(z_{1}-z_{2}\right)}{\left(z-z_{2}\right)\left(z_{1}-z_{0}\right)}$ $\mathfrak{C} \underset{\mathbb{C}}{0} \mathbb{C}$ etc...

Input: A oriented surface with boundaries $M$;
Output: The double covering $\bar{M}$;
(1) Make a copy of $M$, denoted as $M^{\prime}$;
(2) Reverse the order of the vertices of each face of $M^{\prime}$;
(3) Glue $M$ and $M^{\prime}$ along their corresponding boundary edges to obtain $\bar{M}$.

Fast algorithm for genus- 0 spherical conformal parameterization
Idea: Let $S$ be a Riemann surface. $\exists$ conformal parameterization

$$
\rightarrow \quad \phi: S \rightarrow S^{2}
$$

Let $p \in S$. We can assume $\phi(p)=$ north pole.
Let $\tau$ be the sterographic projection.
Let $\Delta$ be a small "curved" triangle around $p \rightarrow$

$$
\tau_{\ddot{\phi}} \phi(\Delta)=\tilde{\Delta}=\text { big triangle in } \mathbb{C} \text {. }
$$

The angles at the 3 vertices of $\Delta$ is approximately preserved under $\tilde{\boldsymbol{\phi}}$.


Method: In the discrete case, let $M=(V, E, F)$. Take $T=\left[U_{0}, \nu_{1}, \nu_{2}\right] \in F$ and let $p \in T$ be the centroid of $T$.
We can find a harmonic map with boundary condition that $\tilde{\phi}\left(v_{0}\right)=\omega_{0}, \tilde{\phi}\left(v_{1}\right)=\omega_{1}$ and $\tilde{\phi}\left(v_{2}\right)=\omega_{2} \rightarrow$ $\left[\omega_{0}, \omega_{1}, w_{2}\right]$ has the same angle structure as $\left[U_{0}, U_{1}, U_{2}\right]$. Mathematically, we need to solve:

$$
\sum_{\left[v_{i}, v_{j}\right] \in E} \omega_{i j}\left(f\left(v_{j}\right)-f\left(v_{i}\right)\right)=0 \text { for } \forall i=1,2, \ldots, N
$$

and fix $f\left(v_{0}\right)=w_{0}, f\left(v_{1}\right)=w_{1}$ and $f\left(v_{2}\right)=\omega_{2}$.
(Linear system, much faster than iterative scheme)

Remark: Numerical error (conformality distortion) near the north pole is big.
We'll use quasiconformal theories to fix it.
Idea: Let $\varphi: S \rightarrow S^{2}$ with big distortion at north $\begin{gathered}\text { pole. }\end{gathered}$
Reparameterige $\varphi$ by quari-conformal map $g \rightarrow$
g. $\varphi$ can fix the conformality distortion

Brain landmark matching optimized harmonic parameterization
Goal: Given a brain cortical surface $S$. Let $\{p i\}_{i=1}^{N}$ be landmark points defined on $S$. Want to find: $f: S \rightarrow S^{2}$ such that $f$ is as conformal/harmonic as possible and $f\left(p_{i}\right)=q_{i}(i=1,2, \ldots, m)$ for some fixed locations $q_{i} \in \mathbb{S}^{2}$. Suppose $S_{1}$ and $S_{2}$ be two brain surfaces $w /$ landmarks $\left\{p_{i}\right\}_{i=1}^{m}$ and $\left\{p_{i}^{\prime}\right\}_{i=1}^{m}$ respectively. Let $f=S_{1} \rightarrow \delta^{2}$ and $f^{\prime}=S_{2} \rightarrow \delta^{2}$ $\ni f\left(p_{i}\right)=q_{i}=f^{\prime}\left(p_{i}^{\prime}\right)$ for $i=1,2, \ldots, m$,
Then, $\left(f^{\prime}\right)_{0}^{-1} f=S_{1} \rightarrow S_{2}$ is a landmark-matching surface registration of $S_{1}$ and $S_{2}$ (Atlas-based surface registration)

Method 1: Find $f \rightarrow \sum_{\left[v_{i}, v_{j}\right] \in E} \omega_{i j}\left(f\left(v_{j}\right)-f\left(v_{i}\right)\right) \quad \forall i=1,2, \ldots, n$
and $f\left(p_{i}\right)=q_{i} \quad i=1,2, \ldots, m$
(if $p_{i}{ }^{r} s$ are vertices)
Drawback: Bijectivity is difficult to control.
Method 2: Find $f$ that minimizes:

$$
\begin{aligned}
& \text { Method 2: Find } f \text { that minimizes: } \\
& \left.E_{\text {landmanat }} f\right)=\frac{1}{2} \sum_{\left[v_{i}, v_{j}\right] \in E} w_{i j}\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right|^{2}+\lambda \sum_{k=1}^{m}\left|f\left(p_{k}\right)-q k\right|^{2}
\end{aligned}
$$

$\lambda=$ adjusting parameter (Big if we want more accurate landmark matching)

Soft constraint can better control bijectivity.

Using same idea, we use descent method to minimize Elandmark $\frac{d \vec{f}}{d t}=-D \vec{f}$, where

$$
(\overrightarrow{D f})_{i}=\sum_{\left[v_{i}, v_{j}\right] \epsilon} w_{i j}\left(f\left(v_{j}\right)-f\left(v_{i}\right)\right)+2 \lambda \sum_{k=1}^{m}\left(f\left(p_{k}\right)-q k\right)
$$

Normalize $(\underset{D}{f})$ to its tangential component to get

$$
D \vec{f}=(\stackrel{\mathcal{D}}{\boldsymbol{f}})-\langle\stackrel{\mathcal{D}}{\mathrm{f}}, \stackrel{\rightharpoonup}{n}\rangle \stackrel{\rightharpoonup}{n}
$$

Iteratively adjust $\vec{f}$ to minimize $E$ landmark.

Remark: Both methods do not have bijectivity guarantee. Use quasiconformal theories to fix it.


Quasiconformal map between Riemann surfaces
Basic idea: Given two Riemann surfaces $S_{1}$ and $S_{2}$. Under the conformal coordinate charts, $f=S_{1} \rightarrow S_{2}$ is "quasi-conformal" iff $f$ is "quasi-conformal" as a map from $\mathbb{C} \rightarrow \mathbb{C}$ under the conformal charts (follows from the definition. Later)
Suppose $S_{1}$ and $S_{2}$ are simply-connected open Surfaces. $\exists$ conformal $\phi_{1}=I D \rightarrow S_{1}$ and $\phi_{2}: I D \rightarrow S_{2}$ (Conformal parameterization)
Then: $f: S_{1} \rightarrow S_{2}$ is quasiconformal iff
$\phi_{2}^{-1} \circ f \circ \phi_{1}: I D \rightarrow \mathbb{D}$ is quasi-conformal in 2D.
$\therefore$ Focus our attention on $\mathbb{C} \rightarrow \mathbb{C}$ first!

Quasi-conformal map from $\mathbb{C}$ to $\mathbb{C}$
Definition: (Quasiconformal map) Let $f=\mathbb{C} \rightarrow \mathbb{C}$ be a $C^{\prime}$ homeomorphism. $f$ is called a quasi-conformal map with respect to a complex-valued function $\mu: \mathbb{C} \rightarrow \mathbb{C}$, called the Bettrami coefficient, with $\|\mu\|_{\infty}<1$ if:

$$
\begin{gathered}
\text { (*) } \frac{\partial f}{\partial \bar{z}}(z)=\mu(z) \frac{\partial f}{\partial z} \quad \text { where } \\
\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) \text { and } \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)
\end{gathered}
$$

$\mu(z)$ measures the local geometric distortion at $z$.
$(*)$ is called the Beltrami's equation

Remark: 1. When $\mu \equiv 0$, the Beltrami's equation is reduced to the Canchy-Riemann equation. Let $f=u+i v\left(\begin{array}{l}u, v \\ \text { real }\end{array}\right.$ functions)
Then: $\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}(u+i v)-i \frac{\partial}{\partial y}(u+i v)\right)$

$$
\Rightarrow \begin{aligned}
& \partial z \\
&=\frac{1}{2}\left(\left(u_{x}+v_{y}\right)+i\left(v_{x}-u_{y}\right)\right)=0 \\
& u_{x}=-v_{y} \\
& u_{y}=+v_{x}
\end{aligned}(\text { (cauchy - Riemann eqt) }
$$

2. In matrix form, a conformal/holomorpluic complex-value function $f=u+i v$ satisfies:

$$
D f(z)=\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\begin{array}{cc}
u_{x} & -v_{x} \\
v_{x} & u_{x}
\end{array}\right)
$$

or $\binom{-v_{y}}{v_{x}}=\left(\begin{array}{cc}+1 & 0 \\ 0 & +1\end{array}\right)\binom{u_{x}}{u_{y}}$. $\quad(* *)$
Quasi-conformal map generalizes $\left(*_{*}\right)$ by considering

$$
\binom{-v_{y}}{v_{x}}=\underbrace{\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)}\binom{u_{x}}{u_{y}} \quad \text { for some } \alpha, \beta \text { and } \gamma
$$ depending on $\mu$.

Represent the metric distortion
3. Let $J(z)=$ Jacobian of $f=u+i v$ at $z$.

Then $J=\operatorname{det}\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)=u_{x} v_{y}-u_{y} v_{x}$

$$
\begin{gathered}
=\quad\left(u_{x} v_{y}-u_{y} v_{x}\right)=J(z) \\
\therefore J(z)=\left|\frac{\partial f}{\partial z}\right|^{2}\left(1-\left|\frac{\partial f}{\partial z}\right|^{2} /\left|\frac{\partial f}{\partial z}\right|^{2}\right)=\left|\frac{\partial f}{\partial z}\right|^{2}\left(1-\left(\left.\mu(z)\right|^{2}\right)\right.
\end{gathered}
$$

Thus, if $\|\mu(z)\|_{\infty}<1$ and $\left|\frac{\partial f}{\partial z}\right| \neq 0 \quad(f=$ homeomorphism $)$ then $J(z)>0$ everywhere. $\therefore f$ is orientation-preserving

