Computation of disk conformal parameterization
Goal: Given a simply-connected surface S, find Φ:S→ID
Challenge: Cannot get it by computing harmonic map.
(Given a boundary homeomorphism h: DS → DID, there exist a
ningue harmonic map H:S→ID → H|DS = h. Amongst them,
only few of them are conformal w/ suitable boundary conditions)
Idea: (Double covering)
· Let M=(V,E,F), construct
$$\widetilde{M} = (V, \widetilde{E}, \widetilde{F})$$
 which is a
"reflected" copy of M(\widetilde{F} has opposite orientation as F).
· Glive them along the boundary.
· Mu $\widetilde{M} = \widetilde{M}$ becomes a genus D
closed surface

orality.

Indity.

Input: A oriented surface with boundaries M; Output: The double covering \overline{M} ;

- Make a copy of M, denoted as M';
- 2 Reverse the order of the vertices of each face of M';
- Glue *M* and *M'* along their corresponding boundary edges to obtain \overline{M} .

Fast algorithm for genus- 0 spherical conformal parameterizations

$$\frac{9}{\text{dea:}}$$
 Let S be a Riemann surface. \exists conformal parameterization
 $\exists \phi: S \Rightarrow S^2$.
Let $p \in S$. We can assume $\phi(p) = \text{north pole.}$
Let τ be the sterographic projection.
Let Δ be a small "curved" triangle around $p = \exists$
 $\tau \cdot \phi(\Delta) = \tilde{\Delta} = \text{big triangle in } \mathbb{C}$.
The angles at the 3 vertices of Δ is
approximately preserved under $\tilde{\phi}$.

ON LA

Method: In the discrete case, let
$$M=(V, E, F)$$
. Take
 $T = [V_0, V_1, V_2] \in F$ and let $p \in T$ be the centroid of T .
We can find a hormonic map with boundary condition
that $\widetilde{\Psi}(v_0) = w_0$, $\widetilde{\Psi}(v_1) = w_1$ and $\widetilde{\Psi}(v_2) = w_2 \ni$
 $[w_0, v_1, w_2]$ has the same angle structure as $[v_0, v_1, v_2]$.
Mathematically, we need to solve:
 $\sum w_{ij} (f(v_j) - f(v_i)) = 0$ for $\forall i=1,2,...,N$
 $[v_{i,v_j}] \in E$
and fix $f(v_0) = w_0$, $f(v_1) = w_1$ and $f(v_2) = w_2$.
(Linear system, much faster than iterative scheme)

Brain landmark matching optimized harmonic parameterization
Goal: Given a brain cortical surface S. Let
$$ip_i j_{i=1}^N$$
 be
landmark points defined on S. Want to find: $f: S \rightarrow S^2$
Such that f is as conformal/harmonic as possible and
 $f(p_i) = g_i \ (i=1,2,...,m)$ for some fixed locations $g_i \in S^2$.
Suppose S₁ and S₂ be two brain surfaces w/ landmarks
 $ip_i j_{i=1}^m$ and $ip_i' j_{i=1}^m$ respectively. Let $f: S_1 \rightarrow S^2$ and $f': S_2 \rightarrow S^2$
 $f(p_i) = g_i = f'(p_i')$ for $i=1,2,...,m$.
Then, $(f')^{-1} f = S_1 \rightarrow S_2$ is a landmark-matching surface
 $registration of S_1$ and S_2 (Atlas-based surface registration)

MALL

Method 1 Find
$$f \rightarrow \sum W_{ij}(f(v_j) - f(v_i)) \quad \forall i = 1, 2, ..., n$$

$$[v_{i,v_j}]_{i \in E}$$
and $f(p_i) = g_i \quad i = 1, 2, ..., m$

$$(if p_i's are vertices)$$
Drawbacke: Bijectivity is difficult to control.
Method 2: Find f that minimizes:

$$E_{landmak}f) = \frac{1}{2} \sum_{(v_i,v_j)\in E} W_{ij} [f(v_i) - f(v_j)]^2 + \lambda \sum_{k=1}^{m} [f(p_k) - g_k]^2$$

$$\lambda = adjusting parameter (Big if we want more accurate landmake matching)$$
Soft constraint can better control bijectivity.

Using same idea, we use descent method to minimize Elandmark
$$\frac{d\bar{f}}{dt} = -\hat{D}\bar{f}, \text{ where}$$
$$(\hat{D}\bar{f})_{i} = \sum_{(v_{i},v_{j})\in} (\psi_{i}(v_{j}) - f(v_{i})) + 2\lambda \sum_{k=1}^{M} (f(v_{k}) - 3k)$$
Normalize $(\hat{D}\bar{f})$ to its tangential component to get $\hat{D}\bar{f} = (\hat{D}\bar{f}) - \langle \hat{D}\bar{f}, \bar{n} > \bar{n}$ (teratively adjust \bar{f} to minimize Elandmark.

OVELLE!

Quasiconformal map between Riemann surfaces
Basic idea: Given two Riemann surfaces
$$S_1$$
 and S_2 .
Under the conformal coordinate charts, $f = S_1 \rightarrow S_2$ is
"guasi-conformal" iff f is "guasi-conformal" as a
map from $C \rightarrow C$ under the conformal charts (follows
from the definition. Later)
Suppose S_1 and S_2 are simply-connected open surfaces.
 $G_{11} \oplus C$
 \exists conformal $\phi_1 = 1D \rightarrow S_1$ and $\phi_2 = 1D \rightarrow S_2$ (Conformal
parameterization
Then: $f: S_1 \rightarrow S_2$ is guasi-conformal iff
 $\phi_2^{-1} \circ f \circ \phi_1 = 1D \rightarrow ID$ is guasi-conformal in 2D.
in Focus our attention on $C \rightarrow C$ first!

Quasi-conformal map from C to C
Definition: (Quasiconformed map) Let
$$f: C \rightarrow C$$
 be a C'
homeomorphism. f is called a guasi-conformal map with
respect to a complex-valued function $\mathcal{M}: C \rightarrow C$, called
the Beltrami coefficient, with $\|\mathcal{M}\|_{\infty} < 1$ $\forall f:$
 $(\star) \frac{\partial f}{\partial z}(z) = \mathcal{M}(z) \frac{\partial f}{\partial z}$ where
 $\frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})$ and $\frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})$
 $\mathcal{M}(z)$ measures the local geometric distortion at z .
 (\star) is called the Beltrami's equation

Remark: 1. When
$$\mu \equiv 0$$
, the Beltrami's equation is reduced
to the Cauchy-Riemann equation. Let $f = u + iv$ (u, v
then: $\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} (u + iv) - i \frac{\partial}{\partial y} (u + iv) \right)$
 $= \frac{1}{2} \left((u + vy) + i (vx - uy) \right) = 0$
 $\Rightarrow \int ux = -vy \quad (Cauchy - Riemann eqt)$
2. In matrix form, a conformal/holomorphic complex-value
function $f = u + iv$ satisfies:
 $Df(z) = \begin{pmatrix} ux & uy \\ vx & vy \end{pmatrix} = \begin{pmatrix} ux - vx \\ vx & ux \end{pmatrix}$

$$\begin{array}{l} 0r \quad \begin{pmatrix} -v_{y} \\ v_{x} \end{pmatrix} \stackrel{\text{Td}}{=} \begin{pmatrix} +1 & 0 \\ 0 & +1 \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} \quad - \qquad (\# \#) \\ 0 \quad +1 \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} \quad - \qquad (\# \#) \\ 0 \quad \text{(} \# \#) \\ (\# \#) \quad = \begin{pmatrix} \pi & \beta \\ 2 & \theta \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} \quad \text{for some } d, \beta \text{ and } Y \\ depending \quad \text{on } \mathcal{M} \\ depending \quad \text{on } \mathcal{M} \\ \text{Represent the metric distortion} \\ 3. \quad \text{Let } J(z) = Jacobian \quad \text{of } f = u + iv \quad \text{at } z. \\ \text{Then } J = \det \begin{pmatrix} u_{x} & u_{y} \\ v_{x} & v_{y} \end{pmatrix} = \left(u_{x} \nabla y - u_{y} \nabla x \\ \frac{2 + 1}{\theta z} \right)^{2} - \left(\frac{2 + 1}{\theta z} \right)^{2} = \left(\frac{u_{x} + v_{y}}{\psi} \right)^{2} + \left(v_{x} - u_{y} \right)^{2} - \left(\frac{u_{x} - v_{y}}{\psi} \right)^{2} + \left(v_{x} - u_{y} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} = \left(\frac{2 + 1}{\theta z} \right)^{2} = \left(\frac{2 + 1}{\theta z} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} = \left(\frac{2 + 1}{\theta z} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right)^{2} \\ \frac{2 + 1}{\theta z} \left(1 - \left(\frac{2 + 1}{\theta z} \right)^{2} \right$$

Thus, if
$$\|M(z)\|_{0} < 1$$
 and $\left|\frac{2f}{2z}\right| \neq 0$ (f = homeomorphism)
then $\overline{J}(z) > 0$ everywhere. \overline{f}_{2} f is orientation - preserving
everywhere