Lecture 5:
Computation of discrete harmonic map
Let M be a triangulated surface. A piecewise linear function or map is a function/map on M such that it is linear on each triangular face.
Theorem: Given a piecewise linear function $f: M \rightarrow \mathbb{R}$, then the harmonic energy of f is given by:

$$
\begin{aligned}
& E(f)=\frac{1}{2} \sum_{\left[v_{i}, v_{j}\right] \in M} w_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)^{2} \\
& w_{i j}=\cot \theta_{i j}^{k}+\cot \theta_{j i}^{l} \\
& (\text { Cotangent formula })
\end{aligned}
$$

where

Definition: (Laplace operator) The discrete Laplacian DPL on a $^{\text {on }}$ piecewise linear function f is

$$
\Delta P L f\left(v_{i}\right)=\sum_{\left[v_{i}, v_{j}\right] \in M} w_{i j}\left(f\left(v_{j}\right)-f\left(v_{i}\right)\right)
$$

Hence, if f minimizes the discrete harmonic energy, then:

$$
\Delta_{P L} f \equiv 0
$$

Remark: The motivation of this definition is by taking the derivative of the discrete harmonic energy:

$$
E(f)=\frac{1}{2} \sum_{\left[v_{i}, v_{j}\right] \in M} \omega_{i j}\left(f\left(v_{j}\right)-f\left(v_{i}\right)\right)^{2}
$$

Recall: The Euler-Lagrange eft of $\int_{M}|\nabla f|^{2}$ is given by

$$
\Delta f=0
$$

Computational Algorithm for Disk Harmonic Maps

Input:A topological disk M;
Output:A harmonic map $\varphi: M \rightarrow \mathbb{D}^{2}$
(1) Construct boundary map to the unit circle, $g: \partial M \rightarrow \mathbb{S}^{1}, g$ should be a homeomorphism;
(2) Compute the cotangent edge weight;
(3) for each interior vertex $v_{i} \in M$, compute Laplacian

$$
\Delta \varphi\left(v_{i}\right)=\sum_{v_{j} \sim v_{i}} w_{i j}\left(\varphi\left(v_{i}\right)-\varphi\left(v_{j}\right)\right)=0 ;
$$

(9) Solve the linear system, to obtain φ.

Figure: Harmonic map between topological disks.

Important fact:
Theorem: Suppose a harmonic map $\varphi:(S, g) \rightarrow \Omega \subseteq \mathbb{R}^{2}$ satisfies:
(1) Ω is convex;
(2) the restriction of $\varphi: \partial S \rightarrow \partial \Omega$ on the boundary is homeomophic Then: u is diffeomurphic in the interior of S.
Proof: By regularity theory of harmonic maps, we get the smoothness of the harmonic map. Assume $\varphi:(x, y) \rightarrow(u, v)$ is not homeomorplic, then there is an interior point $p \in \Omega$, the Jacobian matrix of φ is degenerated at p.
$\therefore \exists a, b \in \mathbb{R}$ (not all zero) such that:

$$
a \nabla u(p)+b \nabla v(p)=0
$$

By $\Delta u=\Delta v=0$, the auxilary function
$f(q)=a u(q)+b v(q)$ is also harmonic.
$\because \nabla f(p)=0 \quad \therefore p$ is a saddle point of f.
Consider $\Gamma=\{q \in S \mid f(q)=f(p)-\varepsilon\}$ (level set of Γ has two connected components intersecting f near p) 4 points.
But Ω is a planar convex domain, $\partial \Omega$ and the line $a u+b v=$ const have two intersection points. By assumption, $\left.\varphi\right|_{\partial s}$ is a homeomorphism. Contradiction. $a u+b v=$ cons $\therefore \varphi$ is homeomorphic.

Theorem: If $f: S \rightarrow \Omega_{\uparrow} \subseteq \mathbb{R}^{2}$ and $g: S \rightarrow \Omega$ are both harmonic map satistying $f l_{\partial s}=g l_{\partial s}=(\underset{\text { (given) }}{h}$, then: $f \equiv g$.

Harmonic map v.s. genus - 0 surface conformal map
Theorem: (Redo) Let $f: M \rightarrow N$ be a harmonic homeomorphism between genus - O closed surfaces M and N. Then: f is a conformal map.

$$
\begin{aligned}
& \text { conformal map. } \\
& (\text { Genus-0: Harmonic } \Leftrightarrow \text { conformal) }
\end{aligned}
$$

Remark: Allow us to compute spherical conformal parametrization by energy minimization (computable!)

Computation of genus- 0 spherical conformal parameterization Let $M=(V, E, F)$ be a triangulation mesh, which is of genus -0.
The harmonic energy of a discrete map $f: M \rightarrow \frac{S^{2}}{\uparrow}$ is given by:

$$
E(f)=\frac{1}{2} \sum_{\left[v_{i}, v_{j}\right] \in M} w_{i j}\left(f\left(v_{j}\right)-f\left(v_{i}\right)\right)^{2}
$$

(Note that $\left\|f\left(v_{i}\right)\right\|^{2}=1$ for $\forall v_{i} \in V$)
We proceed to minimize $E(f)$ according to a nonlinear heat diffusion process:

$$
\frac{d \vec{f}}{d t}=-D \vec{f} \quad\left(\vec{f}=\left(\begin{array}{c}
f\left(v_{1}\right) \\
f\left(v_{2}\right) \\
\vdots \\
f\left(v_{n}\right)
\end{array}\right) ; \in_{\mathbb{R}}{ }_{n \times 3} \vec{f}=\text { direction }\right)
$$

Definition: The normal component of the Laplacian is:

$$
\begin{aligned}
& \left(\Delta f\left(v_{i}\right)\right)^{\perp}=\left\langle\Delta f\left(v_{i}\right), \vec{n}\left(f\left(v_{i}\right)\right)\right\rangle \vec{n}\left(f\left(v_{i}\right)\right) \\
& \Delta f(v)=\sum_{\left[v_{i}, y_{j} \in M\right.} w_{i j}\left(f\left(v_{j}\right)-f\left(v_{i}\right)\right) \in \mathbb{R}^{3} \quad \begin{array}{c}
\text { normal direction } \\
\text { at } f(v)
\end{array}
\end{aligned}
$$

The tangential component of the Laplacian is:

$$
\left(\Delta f\left(v_{i}\right)\right)^{\prime \prime}=\Delta f\left(v_{i}\right)-\left(\Delta f\left(v_{i}\right)\right)^{\perp}
$$

According to gradient descent algorithm, the non-linear diffusion eqt is given by:

$$
\frac{d \vec{f}}{d t}(v, t)=-(\Delta f(v))^{\prime \prime}
$$

Remark: $E(\vec{f})$ is minimized over $\vec{f}: V \rightarrow \mathbb{S}^{2}$ or $\vec{f} \in M_{N \times 3}$, where $N=\#$ of vertices.
Normalized
The descent direction \vec{d} is in \mathbb{R}^{3}.
If we descend $E(\vec{f})$ along the descent direction without normalization, $\vec{f}+\Delta t \vec{d}$ may go outside S^{2}.
\therefore Normalize \vec{d} to the tangential direction on δ^{2}

- $\vec{f}+\Delta t \vec{d}$ may not lie perfectly on \mathbb{S}^{2}, we need to normalize again:

$$
\frac{\vec{f}+\Delta t \vec{d}}{\|\vec{f}+\Delta t \vec{d}\|}
$$

Computational Algorithm for Spherical Harmonic Map

Input: A genus zero closed mesh M;
Output: A spherical harmonic map $\varphi: M \rightarrow \mathbb{S}^{2}$;
(1) Compute Gauss map $\varphi: M \rightarrow \mathbb{S}^{2}, \varphi(v) \leftarrow \mathbf{n}(v)$;
(2) Compute the cotangent edge weight, compute Laplacian

$$
\Delta \varphi\left(v_{i}\right)=\sum_{v_{i} \sim v_{j}} w_{i j}\left(\varphi\left(v_{j}\right)-\varphi\left(v_{i}\right)\right),
$$

(3) project the Laplacian to the tangent plane,

$$
D \varphi\left(v_{i}\right)=\Delta \varphi\left(v_{i}\right)-\left\langle\Delta \varphi\left(v_{i}\right), \varphi\left(v_{i}\right)\right\rangle \varphi\left(v_{i}\right)
$$

(9) for each vertex, $\varphi\left(v_{i}\right) \leftarrow \varphi\left(v_{i}\right)-\lambda D \varphi\left(v_{i}\right)$;

Figure: Harmonic map between topological spheres.

Computation of disk conformal parameterization
Goal: Given a simply-connected surface S, find $\phi: S \rightarrow \mathbb{D}$
Challenge: Cannot get it by computing harmonic map.
(Given a boundary homeomorphism $h: \partial S \rightarrow \partial D$, there exist a unique harmonic map $H: S \rightarrow \mathbb{D} \rightarrow H_{\partial S}=h$. Amongst them, only few of them are conformal w/ suitable boundary conditions)

Idea: (Double covering)

- Let $M=(V, E, F)$, construct $\tilde{M}=(V, \tilde{E}, \tilde{F})$ which is a "reflected" copy of $M(\tilde{F}$ has opposite orientation as $F)$.
- Glue them along the boundary.
- $M \cup \tilde{M}=\bar{M}$ becomes a genus- 0 closed surface

- \tilde{M} can be parameterized onto S^{2} using the previous algorithm.

Problem:

$$
\bar{M} \xrightarrow{f}
$$

$f(\partial M)$ may not be on the equator.
$\because \bar{M}$ is a symmetric surface, \exists a conformal map $h: \bar{M} \rightarrow \overline{\mathbb{C}}$ such that $h(\partial M)=\partial I D$.
Solution: Picking v_{0}, v_{1}, v_{2} on ∂M. Reparameterize ϕ_{0} of by a Mobins Transformation τ such that $h=\tau \cdot \phi \cdot f$ maps v_{0}, v_{1}, v_{2} to $0,1, i$ respectively.
e.g. z_{0}, z_{1}, z_{2} to $0,1, \infty$ can be done by, $\tau_{1}=\frac{\left(z-z_{0}\right)\left(z_{1}-z_{2}\right)}{\left(z-z_{2}\right)\left(z_{1}-z_{0}\right)}$ $\mathfrak{C} \underset{\mathbb{C}}{0} \mathbb{C}$ etc...

Input: A oriented surface with boundaries M;
Output: The double covering \bar{M};
(1) Make a copy of M, denoted as M^{\prime};
(2) Reverse the order of the vertices of each face of M^{\prime};
(3) Glue M and M^{\prime} along their corresponding boundary edges to obtain \bar{M}.

