Computation of QC map using auxiliary metric
Definition: (Beltrami Differential) A Beltrami differential
$$\mu(z) \frac{d\bar{z}}{d\bar{z}}$$

on a Riemann surface S is an assignment to each chart
(Ua, ϕ_{2}) of an L[©] complex -valued function μ_{2} defined
on local parameters \bar{z}_{4} such that :
 $M_{4}(\bar{z}_{4}) \frac{d\bar{z}_{p}}{d\bar{z}_{a}} = M_{p}(\bar{z}_{p}) \frac{d\bar{z}_{p}}{d\bar{z}_{a}}$
on the domain which is also covered by another chart
(Up, \bar{z}_{p}), where $\frac{d\bar{z}_{p}}{d\bar{z}_{d}} = \frac{d}{d\bar{z}_{d}} \phi_{2}p$ and $\phi_{x}p = \phi_{p} \cdot \phi_{a}^{-1}$.

Definition: (QC map between Riemann Surfaces) An orientation
preserving homeomorphism
$$f: S_1 \rightarrow S_2$$
 is called quasi-conformal
associated with $\mathcal{M} d\bar{z}$ if for any chart (Ud, φ_d) on S_1
and for any chart (V_{β}, ψ_{β}) on S_2 , the mapping
 $f_{\alpha\beta} := \psi_{\beta} \circ f \circ \varphi_{\alpha}^{-1}$ is QC associated with $\mathcal{M}_{\alpha}(\mathcal{Z}_{\alpha})$. Also,
on the domain on S_1 which is also covered by (Ud', $\varphi_{\alpha'}$),
 $f_{\alpha'\beta} := \psi_{\beta} \circ f \circ \varphi_{\alpha'}^{-1}$ is QC associated with $\mathcal{M}_{\alpha'}(\mathcal{Z}_{\alpha'})$.

Theorem: (Auxilliary metric associated with a Beltrami Differential)
Suppose (Si, gi) and (Sz, gz) are two metric surfaces,
$$f:S_i \rightarrow S_2$$

is a QC map associated with the Beltrami differential $M \frac{d\overline{z}}{d\overline{z}}$.
Let \overline{z} and W be the local isothermal coordinates of Si
and Sz respectively, indeed $g_1 = e^{2\lambda_1(\overline{z})} dz d\overline{z}$ and
 $g_2 = e^{2\lambda_2(w)} dw d\overline{w}$. Define an auxiliary Riemannian
metric on Si,
 $\widetilde{g}_1 = e^{2\lambda_1(\overline{z})} | d\overline{z} + \mu d\overline{z}|^2$.
Then: the mapping $f:(S_1, \widetilde{g}_1) \rightarrow (S_2, g_2)$ is a
conformal mapping.