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By definition, a reflection group is a subgroup of the orthogonal group which is gen-
erated by a finite set of reflections. The concept of a Coxeter group is a purely group-
theoretic analogue of those reflection groups. While the definition of a Coxeter group is
fairly accessible, as it is a finitely presented group of a very specific shape, the theory is
rather deep and still subject to research.

Typical examples of Coxeter groups are dihedral groups and symmetric groups. While
the most important application of Coxeter groups is definitely Lie theory (coming from
Weyl groups and affine Weyl groups), the theory is also relevant for classical geometry
and knot theory.

The course will be divided into two parts. The first part will cover the fundamental
structure theory of Coxeter groups, such as Bruhat order and parabolic subgroups. In
the second part, we will turn our attention to more advanced topics related to Coxeter
groups, depending on the participants’ interests and backgrounds.

Please do not hesitate to email me any questions or suggestions for the courses con-
tents, or these lecture notes in particular. Confer to the course website for the latest
version of the lecture notes, as well as announcements of any kind.
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1 Introduction

The definition of a Coxeter group is fairly abstract, so let us motivate it by discussing
the symmetric group.

Definition 1. Let n > 0 be an integer. The symmetric group over n letters is defined
as the set of all bijective maps from the set {1,...,n} into itself. It becomes a group
under function composition.

For i # j, we denote by (i j) € S,, the map that interchanges 7 and j and leaves all other

elements of {1,...,n} fixed, called a transposition. The transpositions s; = (i i + 1) are
called standard transpositions. More generally, for pairwise distinct i1, ..., iy, we write
(il iQ ’i@)GSn



for the (-cycle, sending iy to io etc.
Elements in f € S, are written as a product of cycles, or in the two-row notation

e ( 1 2 . n )
f f@2) - fn))
Our main goal for now is to show the following:

Theorem 2. The symmetric group Sy, is generated by the standard transpositions s1, ..., Sn—1-

This is certainly well-known and a combinatorial proof is not hard to come by. How-
ever, we want to give a geometric proof of Theorem 2.

In order to give such a geometric proof, we introduce a useful representation of the
symmetric group.

Denote by V one of the following vector spaces:

V=R"orV={uv,...,vp) ER" |1 + -+ + v, =0}
We have an action of S;, on V by
[, vn) = (Vpys -5 Vi) feSn, (vi,...,un) € V.
For i # j, denote by H; ; the hyperplane
Hij={(vi,...,vn) eV ]vi=vj} ={veV|(ij)v=nuv}

Call a vector v € V' regular if v does not lie on any of the hyperplanes H; ;, i.e. if the
coordinates are pairwise distinct. Denote by V'8 < V the set of regular vectors.

The connected components of V™8 are called Weyl chambers. An example for such a
Weyl chamber is the dominant chamber

C={(vy,...,op) €V vy < -+ <uvn}
It is easy to see that we get a bijective map
Sy, — {Weyl chambers}, f— fC.

(pictures)

We define the length function in S,, as follows: The length ¢(f) of f € S, is the number
of hyperplanes H; j such that C' and fC lie on opposite sides of H; ;. So £(f) = 0 if and
only if fC' = C, which means that f is the identity map. Note that S,, permutes the set
of hyperplanes, where fH;j = Hp-1(;) r-1(j)-
Lemma 3. Let f € S, and1 < i <n —1 such H;;11 lies between fC and C. Then
U(sif) =L4(f) — 1.



Proof. We have

U(sif) =#{Hqayp | Hqyp lies between (s;f)C and C'}
=#{H, | Hyp lies between fC and s;C'}
=#{H, | Hyp lies between fC and C and H,p # H; 41}
=0(f) — 1. O

Corollary 4. An element f € Sy, can be written as the product of £(f) standard trans-
positions, but not as a product of less than £(f) standard transpositions.

Proof. Induction on £¢(f). If ¢(f) = 0, then f must be the identity map, and there is
nothing to prove.

If (f) > 0, then fC # C. There must be some hyperplane between fC' and C, and
the only hyperplanes adjacent to C' are those of the form H; ;1. So we find hyperplane
H;i+1 between fC and C.

Now £(s;f) = £(f) — 1 by the lemma, hence s;f can be written as the product of
¢(f) —1 standard transpositions. We see that f = s;- (s;f) is a product of ¢( f) standard
transpositions.

For the converse, use the lemma to show that ¢(s;f) < ¢(f) + 1 for all f € S,, and all
simple reflections s;. O

Observe that Theorem 2 is an immediate consequence of that corollary.
We have proved that S, is generated by the s;. Moreover, the following equations
always hold true (and are easy to prove):

2 e
s; =1, sisj = sjs; if |i — j| = 2,

S$iSi+18i = Si4+15iSi41-

It turns out that these are enough: Any true equation consisting of s;’s on both sides
can be derived from the above relations and the laws of group theory. By definition, this
makes S5, an example of a Coxeter group.

Ezxercise 5. Consider the element

123
f=<3 9 1)=(13)ES‘3.

What is £(f)? Give an explicit formula writing f as the product of ¢(f) transpositions.

2 Coxeter systems
Definition 6. A Coxeter system is a (typically finite) set S together with a map
m:S xS — Zs1 v {400}

such that m(s,s’) = m(s',s) for all s,s' € S, and m(s,s’) =1 if and only if s = ¢'.



The Cozeter group associated with a Coxeter system (S, m) is the group W with the
following presentation:

Generators: The set S.

Relations: For each s,s' € S, we require (ss')"™(**) = 1 unless m(s, s') = +oo.

In the example of S, the set S is given by {s1,...,s,—1} and the function m is
L, 1=y,
misiys;) =42, Ji—jl>2,

We visualize the Coxeter system (S,m) by the Cozeter diagram. The nodes of the
Coxeter diagram are in one to one correspondence with the set S. We draw an edge
between s and s’ iff m(s,s’) = 3. If m(s,s’) = 4, we moreover label the connecting edge
by m(s,s’). The Coxeter diagram for S,, is known as A,_1.

A, 10— — ... — 0,

Let us recall the concept of a finitely presented group in this specific context.

Write S* for the set of words in S, i.e. finite sequences (s, ..., sg) of arbitrary length
{ with s; € S. An elementary reduction of a word w is the deletion of a subword of the
form

length 2m(s,s’)

for s,s' € S. Two words w,w’ are equivalent if there exists a sequence of words w =
wi,...,w, = w of words such that w;; is an elementary reduction of w; or vice versa.
Then W can be defined as the set of all equivalence classes of words. There is a group
structure on W given by

[w] - [w]~ = [wow].,

the circle denoting composition of words. Moreover, we have a natural map ¢ : S — W,
sending an element s € S to the equivalence class of the one-letter word [(s)]~ € W.

The group W is, up to unique isomorphism, uniquely determined by its universal
property:

Proposition 7. Let W’ be any group, and ¢ : S — W' any function such that for all
s,s' € S, we have

((s)(s) ") = 1 in W',

Then there exists a unique group homomorphism @ : W — W' such that ) = @ZA) 0.

[, g

w\JW

w'.



It turns out that the presentation we gave for W is already minimal, i.e. that S is a
minimal generating set and the set of relations is minimal as well.

Proposition 8. The map ¢ : S — W is injective. For each s,s' € S, the order of
o(8)p(s") in W is equal to m(s,s’).

We will give a proof of this proposition later. For now, we use it as an excuse to write
s € W instead of ¢(s) e W.
Ezercise 9. If you are not familiar with the language of finitely presented groups, it

makes sense to think a bit about these concepts:

(a) Going back to the construction of W as equivalence classes of words, why is the
multiplication well-defined, and why does it make W a group?

(b) Give a proof of Proposition 7.

Exercise 10. Show that whenever S # (7, there exists a subgroup H < W of index 2
such that ¢(s) ¢ H for all s € S.

3 Examples of Coxeter groups

In view of Proposition 8, we say that (W, .5) is a Coxeter group without specifying m(-, ).

Ezxample 11. The symmetric group 5, is a Coxeter group with respect to the standard
transpositions si,...,8,—1-

Ezxample 12. The Dihedral group of order 2n is defined to be the group of symmetries
of the regular n-gon. e.g. Dg is the symmetry group of an equilateral triangle. In Dy,
we find precisely n reflections. If a and b are “adjacent” reflections, then (Da,, {a, b}) is

a Coxeter group.
,a

S B A

s
’

Ezample 13. The most interesting examples of Coxeter groups come from Lie theory. If
G denotes a Lie group or a linear algebraic group, one may pick a Borel subgroup B ¢ G
and denote by W < G the! Weyl group. This is always a finite Coxeter group (for some
choice of S determined by B). The Bruhat decomposition

G= || BwB
weW

is the first step towards understanding the group G (which is infinite and has non-trivial
geometry) via the finite Coxeter group W.

For a concrete example, one may choose G to be the general linear group G = GL,,,
B the subgroup of upper triangular matrices and W the group of permutation matrices

LW is not actually a subset of G, but in practice, one can pretty much always treat it like a subgroup.



(i.e. matrices whose associated linear map permutes the set of standard basis vectors).
Then W = S, is a Coxeter group. The Bruhat decomposition in this case is a fancy way
to express Gauss’ algorithm.

Example 14. Let G be the group of orthogonal n x nm-matrices with n odd. The Weyl
group (W, S) is a Coxeter group with Coxeter diagram

4
Bn-p2: e ==

It can be identified with the subgroup of S,,4+1 consisting of those permutations w that
satisfy

wn+2—1)=n+2—w(), 1=1,...,n+ 1.

The simple reflections consist of (i i +1)(n+1—in+2—i)fori=1,...,(n—1)/2 and
the one standard transposition interchanging (n + 1)/2 with (n + 3)/2.

Example 15. Let n = 1. We define W to be the group of matrices g € GL,(Z[t!])
subject to the following three conditions:

o FEach row and each column of g contains only one non-zero entry.
e Each non-zero entry of g has the form ¢ for some m € Z.

o The sum of those exponents occurring in g is equal to zero. Equivalently, det(g) =
+1.

Since W contains all permutation matrices, we get a natural embedding of S, into W.
Group-theoretically, W is the semi-direct product of S, acting on

{(p1s .o pin) €Z" | g + -+ + pun = 0}.

This group W is a Coxeter group with respect to the generating set {so, ..., s,—1}. Here,
$1,-..,8y are the usual standard transpositions of S,, € W. The reflection sq is given
by the matrix

0 0 t
1 0

0 1

t=1 0 0

The corresponding Coxeter diagram is a cycle with n nodes:




The group W is known as the affine Weyl group of GL,. Denote by L the field of
formal Laurent series

L = k(1) :{ i a;t’ | N € Z and a.ek}.
i=—N

Let I denote the subgroup of G = {g € GL,(L) | det(g) € (k[[t]])*} consisting of those
matrices (g; ;) € L™*™ such that

o Each g;; lives in k[[t], i.e. has no negative powers of ¢ occurring with non-zero
coefficient.

o The elements above the main diagonal live in tk[[¢]], i.e. have no non-positive
powers of ¢ occurring with non-zero coefficient.

The group [ is known as [wahori subgroup of G. We get the Iwahori-Bruhat decomposi-
tion

G = |_| Twl.
weW

Similar decompositions exist for SL,,, GL,, etc.
FEzercise 16. Let (W7, S1) and (Wa, S2) be two Coxeter groups.

(a) Show that the product group Wj x Wy can be equipped with the structure of a
Coxeter group (“is” a Coxeter group).

(b) Show that the free product group Wy = Wy, i.e. the coproduct object in the category
of groups, can be equipped with the structure of a Coxeter group.

Ezercise 17. Give an example of two non-isomorphic Coxeter systems whose associated
Coxeter groups are isomorphic.
FEzercise 18. The Bruhat decomposition divides GL3(k) into six subsets, as indexed by

the six elements of Sj3.

e For each w € S3, write down a list of conditions that determine whether a matrix
g € GL3(k) lies in BwB or not.

o Determine the dimension of BwB/B as a variety over k (if k is algebraically closed)
or manifold over k (if k£ = R).

FEzercise 19. Give a description of the Coxeter group (Dy, {a,b}) associated with the
Coxeter graph

8



4 The geometric representation

In this section, pick a Coxeter system (.S, m), denote the corresponding Coxeter group
by W and let ¢ : S — W be the canonical map.

It is easy to write down elements in W, namely by expressing them as w = ¢(s1) - - - ¢(sy)
for some elements s1,...,s, € S. If two such expressions yield the same element w € W,
we can prove they are identical by applying the defining relations of a Coxeter group.
But how can we prove that two expressions yield distinct elements in W7

We can answer this question by introducing a group representation of W, i.e. a suitable
map W — GL(V) for a vector space V. For each pair s,s’ € S, pick a real number
kss € R subject to the following conditions:

o ks =2 whereas ks g <0 for s # &,

o ks = 0if and only if m(s,s’) = 2,
2
o kygkys=4 <cos ﬁ) if 2 < m(s,s’) < oo and

o ksoky s =4if m(s,s") = oo.

If is a canonical choice to always select

kss = —2cos ms, )"

In some circumstances, other choices might be more appealing (e.g. if we can chose all
ks s to be integers).

We define V' to be the R-vector space with basis {as | s € S}. For each s € S, we
define the linear map oy : V — R via

ay (ag) =ksy, s €8.
For s € S,v e V, define the reflection of v along oy as
os(v) :=v—a) (v)as.

Observe that o, defines a map in GL(V) such that (o5)? = id.
If v € V is any vector, we write v > 0 if v is a Ryg-linear combination of the basis
vectors ag, s € S. Similarly, we write v < 0 if —v = 0.

Lemma 20. Consider the rank 2 case S = {s, s’} (the cardinality of the set S is known
as the rank of the Coxeter system) and let f : V. — V be the linear map defined by
f=o05004.

(a) The order of f is equal to m(s,s’) (i.e. the n-fold composition f" identity map if
and only if m(s,s") divides n).



b) Let g, : V — V be described as the alternating composition
[Y g
gn = "004 00500

of n terms ending with og. If n < m(s,s'), then g,(as) = 0.

Proof. Let g = m and let B denote the ordered basis B = (\/g/szas, \/g/kslﬁasl)
(resp. B = (as, o) if m(s, s’) = 2). With respect to the basis B, the matrix representing

f is given by
-1 g\ (1 0\ [¢*-1 —g\
(0 1)(9 —1>_< g -1)=4

The determinant of A is one and the trace is given by ¢ — 2.

In case m(s,s’) = oo, we get g = 2. It follows that the matrix A has two positive
real eigenvalues and is not conjugate to the identity matrix. In particular, f must have
infinite order.

In case m(s,s’) < oo, the trace is further computed to be

2
T im/m(s,s’ —imw/m(s,s’ 2 2mi/m(s,s’ —2mi/m(s,s’

It follows that e2™/™(s5) are the two eigenvalues of A. Moreover, direct inspection in
case m(s,s’) = 2 shows that A is always diagonalizable, even if the two eigenvalues are
both —1. The claim on the order of f follows from this.

We now prove (b). Once can see this from Euclidean geometry, choosing a basis of the
Euclidean plane consisting of two unit length vectors with angle m between them.
Then A can be seen as the composition of the associated mirror reflections, which is a
rotation by the angle m( - The statements can now be seen to follow from Euclidean
geometry. For these notes we give a purely algebraic proof that leaves no special case
unchecked.

Denote the two (previously computed) eigenvalues of A by A; and Mg, and define
integers

n
Z (AF+25).
Observe that a,, > 0 whenever n < m(s, s’)/2. We claim that A™ has the form

A"z(a" i >, 1<n<m(s,s).

¥ —0p-1
The claim for n = 1 is easily verified. In an inductive step, let us calculate

fn(as’) = O'Sf(nil)(_aS’)v

10



where f = 04 0 0. Since everything is symmetric in s and s, we may assume that the
analogous statement on f(™~1 has been proved and conclude that

FO D (—ag) = an-1(—ay) + (x)(=ay).
Application of o5 does not change the ay-coordinate, so that
fay) = —ap—10¢  (mod Ray),

proving the claim on the lower-right coefficient of A™. Observe that tr(A™) = A} + A\§ =
an — an_1, so that the claim on the top-left coefficient follows.
In the situation of (b), observe that

oy fY20 nodd
In = {f”/Q, n even.
In any case, it follows that
gn(as) € app ojas + Ray
with a|,, /o) = 0 whenever n < m(s, s’). Suppose that g,(as) % 0, i.e. that we had
gn(as) = apnjgjas + cag, c < 0.
Then

osgn(as) = (_a[n/2j - Cks,s’)as + cay

has a negative coefficient for a. Since o5g, = gn+1, we immediately get a contradiction
unless n = m(s,s’) — 1 and 059, = gn+1. The latter condition means that n is odd,
by definition of g,. If m(s,s’) is even and n = m(s,s’) — 1, observe that A™(*) must
be diagonalizable with two eigenvalues equal to —1, thus fm(s’sl) = —1. We conclude
osgn(as) = —ag, showing that the g, (as) = as. O

We return to the situation of a general Coxeter group.

Theorem 21. The map S — GL(V), s — oy extends uniquely to a group homomorphism

o: W — GL(V).

Proof. In view of (Proposition 7), we have to show that f := (c,04)™®%) € GL(V) is
the identity map for all s,s" € S with m(s,s’) < +00. We saw in the previous lemma
that f(as) = as and f(ay) = ay.

Observe that the matrix
o (o3 () a(ay)
aj(as) aglay)

has determinant 4 — kg kg s > 0 since m(s,s’) < +oo. It follows that for each vector

v € V, we find real numbers ¢, d € R such that v := v + cas + day satisfies
al (W) =ay@)=0.

S

Thus f(v') = v’ by definition of f. We conclude that f(v) = v. O

11



We will later see that this representation is faithful (i.e. an injective function). This
allows us to replace (abstract) Coxeter group elements by concrete matrices.

Ezercise 22. Show that o is injective in the rank 2 case.

FEzercise 23. In the situation of Lemma 20 (b), show that g,(ay) < 0 for n < m(s,s').
Show that g, (as) < 0 for m(s,s’) <n < 2m(s,s).

FEzercise 24. Let 0¥ : W — GL(V'Y) be the action of W on the dual space of V, given
by the composing o with the natural map GL(V) — GL(V"Y). Show that for s € S, the
map oV (s): VYV — V'V is given by

a’(8)(A) = A — Aas)ay .

5 Length

We saw that the map ¢ : S — W is injective, so let us write s instead of ¢(s) when
denoting group elements. The elements of s € W are called simple reflections. We saw
that each w € W can be written as

w:sl...sn

for some elements sq,...,s, € S. In this case, we say that (s1,...,sy) is a word repre-
senting w. A word that has minimal length among all words representing w is called a
reduced word of w (also reduced expression and reduced decomposition). We define the
length of w to be the length of any reduced word.

We have the important triangle inequality

Lwiwa) < l(wr) + L(ws).

Moreover, the set S can be identified with the set of elements having length 1. It follows
that [£(ws) — f(w)] < 1 (and in view of Exercise 10, it must be equal to 1).

Proposition 25. Let we W and s € S. In case L(ws) = {(w), we have o(w)(as) = 0.
If {(ws) < L(w), we have o(w)(as) < 0.

Proof. We only show the first statement, as the second one follows from reversing the
roles of w and ws (using wss = w).

If {(w) = 0, we must have w = 1 and there is nothing to show. So let ¢(w) > 1 and
the statement be proved for all elements of smaller length.

If there exists a reduced word of w ending with s, then ¢(ws) = ¢(w) — 1, contradicting
our assumption. Hence we find a reduced word of w ending in some s’ # s. Put
wy := ws’, so that

o(w)(as) = o(wr)o(s)(as) = o(wi)(as) —ky so(wr)(ay).

-~
>0 by induction

12



If o(w1)(as) = 0, we are done. Otherwise we get £(w1s) < ¢(w) by induction. Define
way = wis. If L(wes") < £(wsy), define w3 := was’ and so forth. After at most ¢(w) steps,
we find an element w,, such that wy,(as), w,(ay) = 0 and

w = wy (- 5'ss), l(w) = L(wy) + n.
—_—

n terms

If n < mf(s,s’), then o(---s'ss")(as) = cas+dag for real numbers ¢,d > 0 by Lemma 20.
Hence o(w)(as) = 0 as claimed.
If n > m(s,s’), we could write

ws =wy, (- 5'ss's)
—_—

n+1 terms

= wn (8,88/ DR )
Def. Coxeter group |\ —

2m(s,s')—n—1 terms
This implies
Uws) < l(wy) +2m(s,s’) —n—1 < Ll(w,) +n =Ll(w),
contradiction. O
The root system of (W, S) is defined as
O = {o(w)(as) |lweW,se S} c V.

It follows from Proposition 25 that each root is either positive (i.e. = 0) or negative (i.e.
< 0). Write ®* for the set of positive roots and ®~ for the set of negative roots.
For each w € W, we define the inversion set of w to be

inv(w) = {a € ®* | wa e d}.

Theorem 26. The cardinality of the set inv(w) is equal to ¢(w). More explicitly, given
any reduced word w = sy - - - sy, the roots

a1 =0(sp---s52)(sy), a2 =0(sp---53)(Qgy), ..., 00 = 0,
are pairwise distinct and inv(w) = {aq,...,az}.
Proof. If w = s1---sp is a reduced word, then for each i € {1,...,¢}, the root o; =

o(se---sit1)(as;) must be positive with
o(w)(ai) = o(s1- - si-1)(—as,) <0
by Proposition 25. If it happens that «; = «a; for some 7 < j, then

s, = 0(sip1-s0) (i) = o(sip1- - Se)(aj)(f(sz‘ﬂ e ijl)(—asj)

13



contradicts the fact that s;11---s; is a reduced word. Hence the «; are pairwise distinct
and w has at least ¢(w) inversions.

Conversely, if o € ®* satisfies wa € &, there must be an index i € {1,...,¢} such
that

o(si--s0)(@)e®, o(sip1---50)(a) € DT,

It suffices to show that the only positive root 8 € @ with o(s;)(5) € @~ is f = a,,. By
definition of o, the conditions 3 € ®* and o(s;)(3) € &~ imply that 5 € Rogas,.

We claim that s € S and w € W are such that o(w)(as) is of the form cay,; for some
¢ € Rxy, then ¢ = 1, via induction on ¢(w).

Choose some s with ¢(ws’) < ¢(w) and write w as in Proposition 25 as

w = wy, (- 5'ss'), o(wp)(as) =0, o(wy)(ay) = 0.
—_—

n terms

We may write o(---s'ss’)(as) = csas + cgay with ¢g,cy = 0. Then cso(wy,)(as) and
csro(wy)(ay) are both > 0 and their sum has only a non-zero ag,-coefficient. It follows
that

cso(wp)(as), coro(wn)(ay) € Repas,.

In particular, these two vectors are linearly dependent. Since ay and oy are not, we
get ¢ = 0 or ¢y = 0. It follows that o(---s'ss")(as) is already a positive multiple of
either a; or ay. In view of Lemma 20, it must be equal to as or ay. We see that
as, = co(w)(as) is equivalent to

as, € {co(wp)(as), co(wy)(ay)}.
In both cases, we conclude ¢ = 1 by induction. This finishes the proof. O
Corollary 27. The group homomorphism o : W — GL(V') is injective.

Proof. Tf w lies in the kernel, inv(w) = & by definition. In view of the previous theorem,
this means ¢(w) = 0, i.e. w = 1. O

We will in the future frequently omit the explicit map ¢ and simply write wa instead
of o(w)(a).

Lemma 28. Let wy,ws € W. Then

C(wyws) = L(wy) + £(ws) — 24 (inv(w) N inv(wy 1)).

14



Proof. We calculate

#inv(wiwe) =#{a € ®* | wywoa < 0 and woar < 0}
+ #{a e &1 | wiwea < 0 and woar = 0}
=#{a e ®t | wea < 0}
— #{a e &t | wywaa = 0 and wea < 0}
+ #{a € ¢ | wiwaa < 0 and weax = 0}

—#{a e @™ | wiwea < 0 and waa = 0}

=#inv(wy) — #{f e ® | wif = 0and wy'B =0}
+ #inv(w) — {8 €®" | w1 B <0 and wy '3 <0}
=0(wy) + L(ws) — 2#(inv(wy) N inv(wy ). O

We finish this section by giving a different perspective on the set of positive roots.

Definition 29. A refiection in W is any element conjugate to an element of S. The set
of reflections is denoted by T'c W.

Proposition 30. There is a bijective map
Se:®T T

that can be evaluated as follows: If a € ®T is written as « = v(ag) with v € W and
s€ S, then s, = vsv L.

Proof. Certainly every positive root is of the form vag for some v € W and s € S. By
definition, every t € T is of the form vsv~! for some v € V and s € S. Replacing v by vs
does not change t but changes va; to its negative, so we always can find a v such that
t = vsv~! and vag = 0.

However, none of these representations are unique. We have to show that for all
v,v' € W and s,s’ € S with vag, v'ay > 0 that

vo, = vy == vsv =05 (v) 7L
Replacing (v,v') by ((v')"'v, 1), we may assume that v’ = 1. Now we evaluate for z € V
vsv lr = o(v)oosoo(v ) (z) =z — o) (v iz)va.

Observe that vag € inv(vsv™1).

If vsv~! = &' is a simple reflection, it follows from Theorem 26 that va, = ay is the
only element in inv(vsv™!) = inv(s’).

Conversely, if vas = oy, the map vsv™! only changes the ay-coordinates of its input.
It follows that each element in inv(vsv~!) must be a multiple of ay. We saw in Theo-
rem 26 that the only root in Regay is ay itself, such that inv(vsv™!) = {ay} follows.
In view of Theorem 26, we get vsv™! = s, finishing the proof. O
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Ezercise 31. Let W = S,, be the symmetric group and S = {s1,...,s,—1} the standard
transpositions.

(a) Show that the positive roots are given precisely by the roots of the form
Qjj41 = Qg + Qgyq + 000+ Qs g+ Qg
forl<i<j<n-1.
(b) Show that ; j11 lies in inv(w) if and only if w(z) > w(j + 1).

Ezercise 32. Let w = s1---s, be a reduced word. Define the support of w to be the
smallest subset S’ < S such that inv(w) is contained in the subspace of V spanned by
S’. Show that

supp(w) = {s1,...,Sn}

Ezercise 33. Show that each t € T has a symmetric reduced expression, i.e. a reduced
expression t = s - - - s, such that s, 11-; = s; for i = 1,...,n (conversely, any symmetric
expression in the above form will yield an element of T or 1).

6 Structure theory of Coxeter groups

Let W be a group and S € W a subset such that S generates W, and each element in
S has order 2 (in particular, 1 ¢ S). We define a length function ¢ : W — Z=( as in
the case of Coxeter groups. Let T < W denote the set of all elements in W which are
conjugate to some element of S. The goal of this section is to introduce and halfway
prove the following classification result.

Theorem 34. The following are equivalent:

(a) (W,S) is a Coxeter group, i.e. there exists a function m : S x S — Z v {+0o0}
such that W can be identified as the Coxeter group arising from the Cozeter system

(S,m).

(b) (W,S) satisfies the Strong Exchange Condition: For each t € T and s1,...,8, € S
such that

0(s1+ - spt) < L(s1---sp),
we have

S1-+-Spt =81+ Si_18i4+1 - Sy for some i € {1,...,n}.

(c) (W,S) satisfies the Weak Exchange Condition: For each reduced wordw = s1-+- 8y, €
W (i.e. $1,...,8, € S and ¢(w) = n) and each s € S such that {(ws) < (w), we
have

WS = 81+ 8i—18i4+1 " Sy for some i € {1,...,n}.
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(d) (W, S) satisfies the Deletion Condition: For each non-reduced word w = s1--- s, €
W (i.e. £(w) < n), there exist indices 1 <1i < j <mn such that

W= 81""8i-18i+1"""8j—-18j+1"" " Sn.

We start by proving (a) = (b).

Lemma 35. Let (W, S) be a Cozeter group, w = s1 - - 8, a not necessarily reduced word
and « € inv(w). Then there exists an indexi € {1,...,n} such that & = o(SpSp—1- -+ Si+1)(as,).
For any such index, we have wsy = 81+ 8;—18i+1 - Sn and L(wsy) < L(w).

Proof. Since o = 0 and wa < 0, we find an index 4 such that
o(sit1--sn)(a) =0, o(s;---sp)(a) <O.
In particular, o(s;+1---Sn)(c) lies in inv(s;), which we know to be {as}. Thus o =
0(sp -+ sit1)(as,). By definition, it follows that
Sa = Sn - Si+18iSi+1 """ Sn.

The claimed expression for ws,, is easily verified. The final length condition does not
depend on the particular word w = s1---s,, so we may replace it by a reduced word,
and then ws, = s1-+-8; -8, is an even shorter word for ws,. O

Certainly, the Strong Exchange Condition implies the Weak Exchange Condition.

Lemma 36. It is always true that the Weak Exchange Condition is equivalent to the
Deletion Condition.

Proof. WEC = DC: Assume that (W, S) satisfies the Weak Exchange Condition and
that w = s1--- s, is a non-reduced word. This means that the function

f:{1,...,n} > Z, Jjrl(s1---s5)
is not strictly increasing. In other words, we find an index such that f(j) > f(j + 1), or
explicitly
U(sy---sj8541) < L(s1---s5).

We choose j minimally with this property, then s ---s; is reduced. Apply the Weak
Exchange Condition to the reduced word s; ---s; and the element s;,q1 € S to find the
index ¢ needed for the Deletion Condition.

DC = WEC: If s -+ s, isreduced but s7 - - - s,,5 is not, apply the Deletion Condition
to the non-reduced word s; - - - s,s. It is impossible to find indices ¢ < j < n such that

~

Sl...snS:81...§\Z-...Sj...sns’

as this would contradict s; - - - s, being reduced. Thus the Deletion Condition must yield
an index ¢ with

Sl...SnS:Sl...é\i...STM

as required for the Weak Exchange Condition. O
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We see that a Coxeter group must satisfy both Exchange Conditions as well as the
Deletion Condition. This is enough for the structure theory of Coxeter groups. The
reverse implications however are still extremely useful, as they allow us to give examples
of Coxeter groups.

Ezercise 37. Using Theorem 34, prove the following result due to Deodhar [Deo89]:
Let (W, S) be a Coxeter group and let W/ < W be a subgroup generated by a set of
reflections (i.e. a subset of T'). Define

S = {te T a W' | ((tt') > ((t) for cach ' € T~ W'\{t}}.

Show that (W', S’) is a Coxeter group.

Exercise 38. We might define the following Extra Weak Exchange Condition:

For each reduced word w = s1---s, and each s € S such that ¢(ws) < ¢(w), we have
ws = 8§1-++8; -+ 8, for some index 1.

The only difference to the Weak Exchange Condition is that this version requires a
strict inequality (ws) < £(w).

Give an example of a group W with a generating set of involutions S that is not a
Coxeter group but satisfies this Extra Weak Exchange Condition (justifying why we did
not use this extra weak version in Theorem 34)

7 Matsumoto’s Theorem

In this section, we complete the proof of Theorem 34. Let (W, S) be a group together
with a generating set of involutions. Define the function m : S x S — Z u {+0} by

m(s,s’) = order(ss’),

i.e. m(s,s') is the smallest positive integer such that (ss')™(*) =1 in W (or 4c0 if no
such integer exists).

Definition 39. Let (s1,...,s,) be a word in S. We define the following transformations,
yielding a new word in S:

(a) A braid move consists of replacing a subword of the form (s, s, s,s,...) with length
m(s,s’) < +oo by the word (s',s,5',s,...) of the same length.

(b) A nil move consists of replacing a subword of the form (s, s) by the empty word.

The following is an example of two braid moves followed by a nil move in the Coxeter
group Sjy.

515251835253 —> 525152835253 — §95153525353 — $2515352.

By definition of m and the fact that S consists of involutions, it follows that two words
related by a sequence of braid and nil moves will represent the same element of W.
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Theorem 40 ([Mat64]). Suppose that (W, S) satisfies the Weak Exchange Condition.
Let (s1,...,5p) and (s},...,s)) be two words in S such that

w:=81---sn=s'1~-séeW

and L(w) = £ (i.e. the second word is reduced, the first might not be). Then (s1,...,Sn)
can be transformed into (sy,...,s}) by a sequence of braid moves and nil moves.

Proof. Induction on n = 0. If n = 0, the first word is empty, thus w = 1 and we must
have ¢ = 0 as well. The claim is trivially satisfied.

Let us now assume that n > 0 and the corresponding claim has been proved for all
words in S of length < n.

If {(wsy,) > L(w), then s1---Sp—1 = 8} - - spsy with the right-hand side reduced. By
induction, we can transform sy --- s, into s} - - - sys, s, using a sequence of braid moves
and nil moves (where we don’t touch the rightmost letter). Apply another nil move to
transform this into s/ - - - sJ.

Certainly, if s, = s}, we get

/ /
31"'3n71:51"'5£_1

and can apply induction immediately.

We may and will assume that ¢(ws,) < ¢(w) with s, # s}. Applying the Weak
Exchange Condition to &) --- s, and s, shows that {(ws,) < {(w).

We consider alternating words, i.e. words in {sj, s,} of the form

(.« )80y 80y 80, Sny v - )

of arbitrary length, without specifying whether the words starts/ends in s, or sj.
Pick such an alternating word a = (..., ), Sp, S}, Sn,...) of maximal length m > 0
such that

l(wa) = L(w) —m,

here, @ € W denotes the element in W represented by the word a. Write the letters of a
as a = (ai,...,an). Define ap41 to be the unique element of {s,, s;} not equal to a,.
Chose a reduced word w for wa, and denote by wa the word obtained by composing
w with a. By choice of a, wa is a reduced word for w.
We saw that £(wam,+1) < l(w), since a1 € {s), sp}. Thus we may apply the Weak
Exchange Property to the reduced word wa and the simple reflection a,,+1 € S. We
conclude that one of the following statements must hold true:

(1) wap+1 is represented by a word of the form w’a with w’ being obtained from w by
deleting one letter or

(2) wap+1 is represented by a word of the form wa’ with a’ being obtained from a by
deleting one letter.
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In case (1), we would get a reduced word for w given by w’aa,+1, which contradicts
the choice of m. So we must have (2).

Case (2) means that a is a reduced word but aa,,+1 is not. Since £(aanm+1) = ¢(a)—1,
the word a’ must be reduced. It follows that @’ is obtained from a by deleting the
leftmost letter a; (as @’ cannot contain a subword of the form ss, nor can a’ end with
am+1). We see that

al...am_i_l:az...amEW?

or equivalently a1 Qa1 - a2 = 1.

It follows that m(s,s’) < m, in particular m(s,s’) < +o00. Moreover, m < m(s,s’)
follows since a is reduced. Hence m = m(s,s’). Denote @ = (ag,...,am+1). Then we
can perform a braid move to change between wa and wa, both of which are reduced
words for w.

One of these reduced words ends with s,,. If, say, wa ends with s, then wa ends with
sy and we can use induction to get

braid & nil move braid move ~ braid moves
(81y...y8p) —mom-tmmmmmts wa ————"" W@ ---to-smoesi- > (sh,.. ., 8p).

If wa ends with s, then wa ends with s,, and we just have to interchange wa with wa in
the above picture. O

From Matsumoto’s theorem, we can immediately see the remaining direction (¢) =
(a) of Theorem 34. The interested reader may take it as an exercise to formalize such a
proof.

Remark 41. Associated with a Coxeter system (S, m), we can define the Braid group to
be the group presented as follows: The generating set is given by .S, and the relations
are

(ss'ss’ ) = (s'ss's--) Vs,s' € S s.th. m(s,s’) < +o0.
- ~- (- ~- ~/
m(s,s’) terms m(s,s’) terms

There is a natural map from the Braid group to the associated Coxeter group, which is
of course surjective but not injective. However, Matsumoto’s theorem asserts that the
take a reduced word map is well-defined from the Coxeter group to the Braid group.

Braid groups of type A, have a nice geometric interpretation, where group elements
can be understood as braids of n+ 1 strings and group multiplication being composition.
Hence the name braid move. We might talk a bit more in depth about braid groups
later, depending on time constraints and participants’ interest.

Ezercise 42. Given any word w = s1 - - - Sy, describe an algorithm to check if the word is
reduced or not based on Matsumoto’s theorem. Give a second algorithm that is based
on Proposition 25.

Ezercise 43. Using the results of section 1, prove that S, is indeed a Coxeter group.
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8 Parabolic subgroups

Consider a Coxeter group (W, S).

Definition 44. For each subset I < 5, we define W7 to be the subgroup of W generated
by I.

Subgroups of this form are known as standard parabolic subgroups. By parabolic sub-
groups, one understands subgroups equal or conjugate to standard parabolic subgroups,
depending on the author.

Using Matsumoto’s theorem, it is easy to see that w € W7 if and only if supp(w) < I.
It follows that W; n Wy = Wi~y for I,J < S.

Definition 45. For L, R < S, we define “WF < W to be the subset of all those w € W
that satisfy

VieL: {(lw)>{l(w) and Vre R: l(wr)>l(w).
If one of the sets is empty, we write

Wi =OWE = {weW | l(ws) > l(w) Vs € R},
Lw =tW9 = {we W | {(sw) > l(w) Vs € L}.

Lemma 46. Let I = S and define Vi S V to be the vector space spanned by the oy for
sel. LetweW. Then

weW; < inv(w) € V;

weW! «— inv(w) nV; = &.

Proof. The first equivalence follows from the above remark on the support and Exer-
cise 32.

If w¢ W, then ay € inv(w) for some s € I. Conversely, if w € W/, then wa, > 0 for
all se I. Hence wa >0 for all a € T n V7. O

Corollary 47. For I < S, wy € W! and wy € Wy, we have
l(wrwsz) = L(wy) + L(wa).

Proof. Indeed, observe that wo € Wy such that inv(w;) n inv(wy ') = & follows. Con-
clude using Lemma 28. O

Proposition 48. Let LLR< S and we W.
(a) The double coset

WiwWpg = {wwaR ‘ wyr, € Wi, wgr € WR} cWw
contains precisely one element of minimal length, denoted “w®. We have

(WrwWg) n IWi = (L),
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(b) There exist elements wr, € Wi, and wr € Wg such that

w = wy, Pwlwg and ((w) = O(wr) + L(Fw?) + £(wg).

If L = or R = J, then the elements wr,wr are uniquely determined.

Proof. (a) Let w; € WrwWpg be an element of minimal length. It is clear that such an

element must lie in LWE.
Pick any element wy € (WrwWgr) n W, We need to prove that w; = ws.

Since wy € Wrw1Wpg, we find elements w;, € Wy, and wr € Wg such that wy =
WLWIWR.

For any such elements wy,, wg, we apply Corollary 47 to see

l(we) + l(wg) — (wy) = E(wgwél) —l(wg) < E(wzlwgwﬁl) = l(wy) < L (w3).
Hence ¢(wgr) < f(wy). An analogous argument shows f(wy) < f(wg), so that
l(wr) = {(wr).

Among all pairs (wr,wr) € Wr x Wg with wy = wrwijwg, pick one such that
l(wr) = f(wg) gets minimal. If this length is zero, we see w1 = wy.

Otherwise, we find a simple reflection s € R such that wras < 0. Since w; € WE,
we see wiwpros < 0. However, wy € WE again such that
WLwWIWRs = waas = 0 = [ := —wjwgas € inv(wy) € V.

We conclude

wy = wrwwr = (wrsg) w (wWgs),
——
eWr, EWR
contradicting minimality of {(wg).
Among all pairs (wp,wr) € W x Wgr with w = wy, LwPRwg, pick one such that
l(wpg) is as small as possible. We already know from Corollary 47 that

fwr, Fw?) = (wr) + 0(Fw™).

In view of Lemma 28, it suffices to show that there exists no root a € ®* with

wr, Lwfa < 0 and wgla <0.

Indeed, if o was such a root, then “wfa > 0 as “w® € WE. Hence 8 := ‘wfa €
inv(wr,) < Vi, and we conclude

w = wig, LU)RU}R = WLSB LszawR,
—— ——
eWr, EWR

contradicting minimality.

It remains to observe that if L = ¢ or R = ¢, we must have wy, = 1 resp. wg = 1,

and then the other element is uniquely determined by w = wy, “wfwg. O
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Ezample 49. Consider the symmetric group W = S,,. Decompose the set {1,...,n} into
blocks of adjacent numbers, i.e. subsets

By = {bg, by +1,...,bpq1 — 1}

for numbers 1 = b; < --- < by = n+ 1. Call a permutation w € S,, block-preserving if
wBy, = By, for all blocks By,.
Let I < {s1,...,8n—1} be the subset of those standard transpositions s; = (¢ i+1) such

that ¢ and 7+ 1 lie in the same block. Then W7 is precisely the group of block-preserving
permutations. Note that each standard parabolic subgroup of .S,, arises in this way.

The set W consists of all permutations w € W which are block monotonic, i.e. satisfy
w(i) < w(j) whenever i < j lie in the same block.

Ezercise 50. Let w € S5 be the permutation w = (1 2 3)(4 5).
(a) Determine the length and the support of w.

(b) Let L = {s2,s3} and R = {s, 53,54}. Compute “w’ and provide elements wy,wr
as in Proposition 48 (b).
Ezxercise 51. Let Ry, Ry € S. Show that WHivR2 — k1  pyke,

Ezercise 52. Give an example of a Coxeter group (W, S), an element w € W and subsets
L, R < S such that the elements wy, wpr as in Proposition 48 (b) are not unique.

Ezercise 53. In the setting of a general Coxeter group (W, S) with w e W and L, R < S,
prove that

LwR _ L(wR) - L(QwR)Q_

Exercise 54. Let L, R < S and w € “WE. Let Ry < R be the subset of those reflections
s € R with wsw~! € L. Show that there is a bijective map

W xWg) 2 WiwWh,

1

where we identify the pairs (wp, swr) and (wpwsw™ ", wg) for wy, € Wi, wr € Wg and

SERl.

Ezercise 55. Let L,R < S and w € W. Show that ¢(Lw') is given by the number of
roots a € +\Vg such that wa e @7\VL.

9 Bruhat order

Let (W, S) be a Coxeter group.

Definition 56. If w e W and ¢t € T are such that ¢(w) < ¢(wt), we write w — wt. We
say that w < w’ in the Bruhat order if there is a sequence of such arrows

/
w=w W2 > " —=>Wy =W .
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We note the following immediate properties.
Lemma 57. Letv,we W andteT.
(a) If v < w then £(v) < l(w).
(b) The Bruhat order is a partial order.
(c) We have 1 < w.
(d) w < tw if and only if L(w) < L(tw).
(e) v <w if and only if v < w1 O

Ezample 58. Let G be a Lie group, B < G a Borel subgroup and W the Weyl group.
We know that G = | |,y BwB.

The group G carries the structure of a topological space, so we can consider the closure
of a double coset BwB. This is naturally a union of double cosets again, so we may ask
which double cosets Bw'B appear as subsets of BwB. It turns out that this is the case
if and only if w’ < w in the Bruhat order. In other words,

BwB = |_| BwB.

w!' <w
We give equivalent descriptions of this order.

Definition 59. A Bruhat cover is a pair (w,w’) € W x W such that w < w’ and
l(w') = l(w) + 1. We write w < w'.

Note that if (w,w’) is a Bruhat cover, then w™'w' € T.

Theorem 60. Let w = s1--Sy) € W be a reduced word and v € W. The following
are equivalent.

(a) v < w in the Bruhat order.
(b) There are indices 1 <y < --- < iy < l(w) such that v = s;, --- s, .
(¢) There are indices 1 < iy < --- < iy < l(w) such that v = s;, ---s;, and k = £(v).

(d) There is a sequence of Bruhat covers
V=00 <UL < < V() —p(v) = W
Proof. (a) = (b): Take a sequence
W=w — > Wy =V

as in the definition of the Bruhat order and apply the Strong Exchange Property m — 1
times.
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(b) = (c): Any word representing v € W contains a reduced subword representing
v, this follows from the Deletion Property.

(¢) = (d): Induction on ¢(w) — £(v). If £(v) = £(w), there is nothing to show.

Otherwise, we can denote by h € {1,...,¢(w)} the smallest value not equal to any of
the i1,...,9x. Among all reduced subwords representing v, choose one such that this
h e {1,...,0(w)} is as large as possible. We let v/ € W be the element obtained by
inserting s; into this reduced word for v, i.e.

/
v = 51...Si715hsih...sik

(using the fact i; = j for j < h). Let o := s, - - 54, (a5, ) € P, where «, denotes the
simple root associated with the simple reflection sy,.
If « € &7, we can apply the Weak Exchange Property to write
SZSZh e slk e slh DR SZ]_181]+1 o .. slk

for some j € {h,...,k}. Then

’l} = Sl DY Shslh DY 8i37181]+1 e SZe(w)
is a reduced word representing v starting with sp - - - sy, contradicting the choice of h.
If a« € ®*, we see that
va =51 sp—1(ag,) € DT

as s1 - Sy(w) is reduced. Hence £(v) = £(vsy) > £(v). In particular, the above word for
v must be reduced and v < v’. We can apply induction to finish the proof.
The final implication (d) = (a) is trivial. O

Corollary 61. Let v,we W and s € S such that ws < w.

(a) If vs < v, then v < w if and only if vs < ws.

(b) If vs > v, then v < w if and only if v < ws.

Proof. Pick a reduced word of w = s1---s,, ending with s and apply the subword
criterion Theorem 60 (c). Then part (b) as well as the implication “ <= " in (a) follow
immediately.

It remains to show the implication “ = " in (a). If v < w, then vs < v < w. Apply
(b) to get vs < ws. O

Ezercise 62. Let s € S and w € W. Show that s < w if and only if s € supp(w).

Ezercise 63. Give an example of a Coxeter group (W, .S), two elements v < w in W and
a reduced word

’U:Sl...se(v)

that is not a subword of any reduced word for w.

Ezercise 64. Show that if (W7, 1) is a standard parabolic subgroup of (W, S), then the
Bruhat order on W7 is the restriction of the Bruhat order on W.

Exercise 65. Show that for any finite subset F© © W, there exists some w € W with
v<wforallve F.
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10 Bruhat order on parabolic quotients

Let (W, S) be a Coxeter group and L, R < S be two arbitrary subsets.
Lemma 66. Let ve “WFE and we W. Then

VW = v Tw.

Proof. Decompose w = wy, ©

w®wpr as in Proposition 48 (b). Choose reduced words for
wr, “wf and wr and concatenate them to a reduced word for w.
Since v € LW, no reduced word for v can start with an element of L nor end with an

element of R. Applying the subword criterion from Theorem 60 (c), we conclude. O

Corollary 67. If v < w with v e LW, then w e PWE or w = sv for some s € L or
w = vs for some s € R.

Proof. v < w® < w. One of them must be an equality. O

Proposition 68. If v,w e W&, then v < w if and only if there exists a chain of Bruhat
covers

V=100 <UL <" < Up(y)—f(v) =W
consisting of elements in W,

Proof. Induction on ¢(w). If w = 1, there is nothing to show.

Pick a simple reflection s with sw < w. Then sw e WE,

If sv > v, we get v < sw < w by Corollary 61 and are done.

We may hence assume that v > sv € W&, By induction, there exists some v’ € W%
with sv < v’ < sw.

If sv’ </, we see v < v/ < sw < w and are done by induction.

If sv/ > o/, then v < st/ < w. In case sv' € WE, we are again done by induction. If
however sv’ ¢ W¥ Corollary 67 shows v/ = (sv/)f. Hence v < v/ < sv' < w. We are
again done by induction. O

The main result of this section is the following result, known as Deodhar’s lemma.

Lemma 69 ([Deo77]). Let {R, < S}yep be a family of subsets of S and R = ()
intersection.
Forv,we W, we have v

R, its

rep

B < w if and only if v < w for each r € p.

Proof. Induction on £(w). If £(w) = 0, we get v = 1 s0o v € W, for each r € p. In
particular, v € Wg, so that v = 1.

Let now ¢(w) > 0 and pick a simple reflection s with sw < w. Let L = {s}.

By Corollary 61, we have v < w if and only if “of < sw (using Exercise 53).
Similarly, v < w if and only if “of < sw. We summarize:

L

ind.
UR<w — vRésw = vypr: L

erésw — Vr: UR”gw.

This finishes the induction and the proof. O
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The two-sided analogue of Deodhar’s lemma holds true as well.

Theorem 70. Let A\, p be arbitrary indexing sets and pick subsets
{Lf < S}Ze)n {RT < S}rep-

Define

Li=()Le R:=[)R.

LeX rep

For v,we W, we have "o < w if and only if for each (£,r) € X\ x p, we have
Leplr < .

Proof. The direction “ — ” is trivial since “vfr < Lyft,

Suppose now that “vf < w for all ¢,r. In view of Lemma 69, it suffices to show
Lyl < for all r € p. So fix r € p for the remainder of the proof.

Apply Lemma 69 to the sets Ly, and the elements

to see that

This finishes the proof. O

A typical, and arguably optimal, choice for given v, w is to let

A={seS|sv<v}, p={seS|vs<uv}
Ly = S\{¢} and R, = S\{r}.
Then “vf = v. The elements “vf" are usually much smaller than v, and come with

a bit of extra structure (i.e. all reduced words starting and ending with the same fixed
simple reflections).

Exercise 71. Let L, R < S and v < w. Show that Lot < Lw?,

Ezercise 72. Let v,w € YW and v < w. Show that the following are equivalent:
e For each uw e W with v < u < w, we have v e LWE,
e For each s € L, we have sv € w and for each s € R, we have vs € w.

Ezercise 73. Give an example of a Coxeter group (W,S), subsets L, R < S and two
elements v, w € “W# such that v < w, £(w) — £(v) = 2 and there is no u € YW with
v < u < w (explaining why we can prove Proposition 68 only for one-sided quotients).
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11 The Tableau criterion

In this section, we focus on the example of the symmetric group W = S,,. Recall that
the set of simple reflections is given by the standard transpositions s; = (i ¢ + 1). The
set of reflections is T' = {(i j) | i # j}. The set of roots can be identified with

P={e;—ejli#jtcV ={(v,...,von) eER" |01 + -+ v, =0}.

The positive roots are those e; — e; where i < j. It follows w < w(i j) in the Bruhat
order if and only if w(i) < w(y) for ¢ < j.

Lemma 74. Leti,j€{l,...,n—1} and R := S\{s;}, L := S\{s;}. For
max(l,i+j—n+1) < k <min(i,j) + 1,
define wy, € W to be the permutation

h, h <k,

h+j—k+1, k<h<i,
h+k—i—1, i+1<h<i+j—k+1,
h, h>i+j—k+1.

wg:{1l,...,n} > {1,....,n}, h—

So the permutation matriz of w is given by the block matrix

Ider 0 0 0

| o 0 Idj_ps 0

wly : 0 Idigy O 0
0 0 0 Tdp_i—jint.

(a) The set “WT is given by
EWHE = {wy | max(1,i 4+ j —n+1) <k < min(i, ) + 1}.

(b) ForweW, letk:=1+#{h <i|wh)<j}. Then ‘wf = wy.
(¢) If both wy and wiyq1 are defined, then wy > wiy1 in the Bruhat order.

Proof. (a) The claim wy, € “W® is easily verified, we have to show that these exhaust
this set. Note that wy = 1 if k = min(4,5) + 1.

Let w € “WT\{1}. This means that whenever h; < hg with w(h1) > w(hz), we must
have hy <i < hy and w(hy) > j = w(hse).

Since w # 1, we let k € {1,...,n} be the smallest integer such that w(k) # k.
From w({1,...,k —1}) = {1,...,k — 1}, we get w(k),w (k) > k. By the above
considerations, it follows that k < i < w™!(k) and w(k) > j > k.
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Since k < w(k) < -+ < w(i), we must have w=!(h) > i for k < h < w(k). Note that
w(i+1) <--- <w(n), so that

wi+1)=kwi@+2)=k+1,...,w(i +wk) —k) =w(k)—1.
Since k < w™H(k) < --- < w™(j), we must have w(h) > j for k < h < w™ (k).
Note that w=!(j + 1) < --- < w~!(n), so that
wlG+ 1) =kw ' G+2) =k+1,...w G +w (k) —k) =w (k) -1
Substituting w(k) = j + 1 and w™ (k) = i + 1, we see that w(h) = w(h) for

h<i+j—Fk+1. It follows that w({1,...,i+j—k+1}) ={1,...,i +j5—k+ 1}.
Thus w(h) >i+j—k+1forh>i+j—k+1. Since j +1 >k, we get

wi+j—k+2)<-- <w(n),
so that w = wy;, follows.

(b) The cardinality in question does not change when multiplying by a simple reflection
in L on the left, or a simple reflection in R on the right. By (a), it suffices to show
the claim for the wy, which is easily verified.

(c) Suppose that
max(1,i+j —n + 1) < k < min(i, 7).

Then wiy1(k) = k and wi1(n) = n. Thus wgy1 < w, where w = wiy1(k n) is
the product of wyy; with the reflection (k n). By (b), we have fwf' = wy. By
Lemma 66, we get wg1 < wg. ]

Definition 75. Let w e W and 4,5 € {1,...,n}. We define

wli, ] = #{h < | w(h) > .
Theorem 76 (Tableau Criterion). Let v,w € W. Then the following are equivalent:
(a) v < w in the Bruhat order.
(b) For alli,je{l,...,n}, we have v[i,j] < w[i, j].
(c) Forallie{2,...,n} and je{1,...,n— 1} such that

vE) > v i+ 1) and v(j) > v(j + 1),
we have v[i, j] < wli, j].

Proof. Since v[1,e] = 0 = v[e,n], we may restrict our attention to ¢ > 1 and j < n in
(b). By the previous lemma, the condition v(i, ;] < w[i, j] is equivalent to “vft < Lw®
for R = S\{si—1},L = S\{s;}. Now (a) = (b) is Exercise 71. The implication (c)
== (a) is the two-sided version of Deodhar’s lemma, Theorem 70. O
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Example 77. Consider the group W = 54 with the permutations given as follows:
0100 0010
0010 0100
v=132)=11 o o o w0 =|5 5 ¢ 1
0 001 10 00

Inspecting the element v, we only have to check v[i,j] < w[i,j] for i = 7 = 2. We
compute v[2,2] = 1 and w[2,2] = 1. Thus v < w.

Ezercise 78. Show that wy > wg,1 by exhibiting a sequence of Bruhat arrows wy —

* > Wi1-
Exercise 79. Let v,w € W and i € {1,...,n}. Let v; € Z' be the vector obtained by
sorting the sequence v(1),...,v(i) so that it becomes increasing, and similarly w;. Show

that the following are equivalent:
o v[i,j] <wli,j] forall je{l,...,n}.
e We have v; < w; component-wise in Z'.

Conclude that v < w if and only if v; < w; whenever v(i) > v(i + 1).

Arranging the corresponding vectors ve and w, nicely, one obtains so-called “tableaux”,
giving the name of the Tableau Criterion. These structures and their relationship to the
combinatorics and representation theory of the symmetric group are beyond the scope
of this course (unless the audience insists), so we refer to [BB05, Appendix A3|, as well
as any treatment of the representation theory of symmetric groups (Wikipedia is a good
starting point).

12 Finite Coxeter groups
Let (W, S) be a Coxeter group.
Proposition 80. Let wy e W. Then
(Vwe W : lw) < Ll(wy)) < (Vse S: wps < wop).

There exists an element wg satisfying these properties if and only if W is finite. If such
wyg exists, it is uniquely determined and satisfies moreover the following properties:

(a) w3 = 1.

(b) (wo) = #T = #0+.

(c) For any we W, we have {(wwy) = l(wow) = £(wp) — £(w).
(d) For any s € S, we have woswy € S and wo(s) = —woswy -

(e) Any element w € W satisfies w < wy.
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Proof. If wg € W has maximal length, then ¢(wys) < ¢(wg) for all s € S, showing the
implication “ = ".

If wos < wp for all s € S, we see wy(a) < 0 for all @ € ®*. Thus inv(wy) = ®T.

Such an element is uniquely determined and satisfies inv(w) < inv(wg) for all w e W.
In particular, we get the implication

If Wy is finite, then there trivially exists an element of maximal length. If wq exists,
then each w € W is uniquely determined by inv(w) € inv(wyp), and there are only finitely
many possibilities for those subsets.

Suppose now that W is finite and wy satisfies the defining properties.

77.

(a) Since wq ! has the same length as wy, it must be equal to wp.
(b) We already calculated inv(wg) = ®.

(c) The first identity follows from Lemma 28 together with the above observation
inv(w™!) < inv(wy).

The other equation follows from

f(wwp) = L((wwg) ™) = L(wow™ ) = Llwg) — £(w™) = L(wp) — L(w).

(d) Note that
O(woswo) =L(wo) — £(swo) = L(wo) — £((swo) ")
=l(wp) — L(wps) = £(s) = 1.
Thus inv(wpswy) = {ugsw, }, Proving wocs = Faumsw,- We already saw woas < 0.

(e) This is an easy consequence of (c): Concatenate a reduced word for w with a reduced
word for wow to obtain a reduced word for wg containing that reduced word for w
as a subword. O

Example 81. In the finite Coxeter group W = S,,, the longest element is given by
wo(i) =n+1-—71.

Definition 82. Let L, R < S be subsets and define
LW .= {weW | sw < w forall s € L and ws < w for all s € R}.

We say that L is spherical if Wy, is finite.
Lemma 83. Let L,R< S and we W.

(a) The intersection (WrwWg) n ~FW R is non-empty if and only if both Wi, and Wr
are spherical.

If both Wi, and Wg are spherical, the double coset WrwWpg contains a unique ele-
ment of mazimal length, denoted ~Yw™R. Moreover,

(WrwWg) n ~Ew =1 = (7hy~ 1Y,
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(b) Suppose that L, R are spherical. Then there are elements wy, € Wi, wr € Wgr such
that ~tw™F = wpwwg is a length-additive product:

(("tw ) = t(wy) + £(w) + L(wR).

(c) Suppose that L, R are spherical. For ve W, we have

LvR<w<:)LvR<_Lw_R<:>v< w

Proof. Let us first consider the case that L is not spherical. Then W~ = ¢J: Indeed,

if ve WL, we could write v = vjve with v; € WL and vg € Wr. Thus veas < 0 for all

s € L, showing that L is spherical. The same argument works for R being spherical.
Assume for the remainder of the proof that both W and Wg are spherical. The

arguments are very analogous to the proof of Proposition 48, so we leave them as an

exercise to the interested reader (we won’t use these results). O

Ezercise 84. Let R be spherical. Show that the elements of W™ are precisely those of
the form wwg(R) where w € W and w(R) € Wy is the longest element.

Ezercise 85. Show that for finite Coxeter groups of type B, for n > 3, we have woswg = s
for all s € S.

FEzercise 86. Let (W, S) be a finite Coxeter group and v,w € W. Show that v < w if
and only if wyv = wow.

13 Weak Order

Let (W, S) be a Coxeter group.

Definition 87. Let v,w € W. We say that v is less than w in the left weak order and
write v <p w if £(w) = L(wv™t) + L(v).

We say that v is less than w in the right weak order and write v <p w if ¢(w) =
£(v) + (v w).

One has to verify that these define partial orders, but this is not too hard. So v <p w
means that there is some reduced word for w that starts with a reduced word for v.
The inequality v <y w implies v < w, hence the name “weak order”. In a finite Coxeter
group, the longest element is the unique maximum with respect to both weak orders.

The concepts of left and right weak order are closely related, e.g. by passing to inverses.
In any case, they ask which pairs (wy,ws) € W satisfy the length additivity condition
l(wywe) = L(wy) + l(we2). If G is a Lie group with Borel B and Weyl group W, this
length additivity condition is equivalent to the geometric condition that the product of
Borel double cosets / Schubert cells Bw; B - Bws B should be a Borel double coset again,
namely BwjwsB.

We get the following characterization analogous to Bruhat order.

Lemma 88. For v,w e W, the following are equivalent
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(a) v <p w.
(b) There is a sequence

t1 to t
v:vl—>1)2—>..._">fvn:w

as in the definition of Bruhat order, with the additional restriction that t; € S for
all 7.

(c) There is a sequence of right weak order covers
V=0 <RU <R - <RUp =W
with v; <g vi+1 means v; <g Vi+1 and L(viy1) — (v;) = 1.
(d) We have inv(v™!) < inv(w™1).

Proof. (a) = (b): Just pick a reduced word for v~ w to obtain the required ¢;.

(b) = (c): Trivial.

(¢) = (d): We may assume n = 2, i.e. w = vs for a simple reflection s € S. Then
Proposition 25 shows inv(w™!) = inv(v™1) U {vas}.

(d) = (a): It follows for each root a € ®~ with va € ®* that wlva € ®~. By
Lemma 28, {(w) = £(v) + (v 1w). O

Of course, we get an analogous lemma for the left weak order up to passing to inverses.
Lemma 89. For v,w e W, the following are equivalent
(a) v <p w.
(b) There is a sequence

t1 to tn
V=0V — UV — " —>Up =W

as in the definition of Bruhat order, with the additional restriction that vitivi_l es
for all 1.

(c) There is a sequence of left weak order covers
V=] <[ Uy <[ - <[ Up =W
with v; < vi+1 means v; <r, vViy1 and L(vit1) — €(v;) = 1.
(d) We have inv(v) < inv(w). O

Proposition 90. Let E <€ W be an non-empty set of elements of W. Then an infimum
E exists, i.e. the set of lower bounds

Ib(E)={veW |v<gw for allwe E}

contains a unique maximum with respect to <j,.
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Proof. Induction on min{¢(w) | w e E}. If 1 € E, then 1 is the only lower bound of E.
In the inductive step, let

I:={seS|ws<wforall we E}.

If velb(F) and vs < s, then s € I. Soif I = J, we get Ib(E) = {1} and are done again.
Otherwise, pick s € I define E' := {ws | w € W}. By induction, there is an infimum z
of E'. Then zs is an infimum of E. O

Ezercise 91. Show that the infimum of a set is uniquely determined. Show that if E € W
is a non-empty set with an upper bound, then a supremum (= smallest upper bound)
exists.

Ezercise 92. Let W = S5, v =(13245) and w = (1425 3). Show that v €7 w and
v £p w.

Ezercise 93. Let v,w € W and z € W be the infimum of {v,w} with respect to <.
Show that inv(z) € inv(v) N inv(w) and give an example where the inclusion is strict.

14 Foldings

In this section, we introduce an important concept to create new Coxeter groups from
old ones, as well as understand automorphisms of Coxeter systems.
Let (W, S) be a Coxeter group. Let I" be a group that acts on S such that

m(s,s’) = m(y.s,7.8') for all 5,5 € S and v e T.

Then each v € I' induces a group automorphism of W that preserves S (i.e. a Coxeter
group automorphism). We denote by W' the set of those elements w € W with y.w = w
for all yeT.

Lemma 94. Let we W' and I := {se€ S | ws < w}. Then I is a spherical subset of S
that is preserved by all v € T'. Denoting by wo(I) € Wy the longest element, we have

w = wlwy(I), wl e (W)~ (Wh).

Proof. Since w € W1, we saw already that I must be spherical. The condition y.w = w
implies v(I) = I for all y e IT".

We know that we can always write w as a length additive product w = w!w; for some
w! € W! and w; € W;. By choice of I, we have w; = wo(I). The condition y(I) = I
implies v.wo(I) = wo(I), hence wo(I) € WT. We conclude w! e WT. O

Definition 95. (a) We say that I < S is a spherical I'-orbit if I spherical and of the
form I = {.s | v e I'} for some s € S.

(b) For I < S a spherical I'-orbit, define

Oq:=2asevr:z{veV]fy.v:vforallfyeF}.

sel
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(c) Define ST < W to be the set
ST = {wo(I) | I < S is a spherical T-orbit.}.
Observe that the oy for spherical I'-orbits I form a basis of V.

Lemma 96. For ve VY and I < S a spherical T-orbit, we have
wo(Nv =v —af (v)are VT,
where ay : VI — R is a linear map satisfying oy (o) = 2.

Proof. For ve VT, we have v —wo(I)v € Vi n V. The latter intersection is just Ras by
choice of I. So we get a linear form ay : VI — R such that wo(I)v = v — af (v)ay for
all ve VT,

Since ag, wo(I)ar € VY n Vi and wo(I)? = 1, we see that wo(I)a; = +az. It cannot
be +ay, hence ay (ar) = 2. O

Lemma 97. Let I1,...,1I, be spherical T'-orbits, w = wo(I1)---wo(l,) and s € S such
that wags < 0. Denote by I the I'-orbit containing s. Then I is spherical and

w = wo(Ir) - wo(Li—1)wo(Lix1) - - wo(In)wo (1)
for some index i€ {1,...,n}.

Proof. We saw that I is spherical in Lemma 94. We may certainly find an index ¢ such
that

'U)O(Iz'-i-l) .. -’U)()(In)as =0, ’wo(IZ') . -’LU()(In)Ozs < 0.

Since w' = wo(li41) -+ wo(ly) is in WY, we see w'ay € inv(wo(I;)) for all s’ € I.
Conversely, if (w') 'ay < 0 for some s’ € I;, then (w')~!3 < 0 for all 8 € inv(wo(I;))
(using (w’)~! € WT). This contradicts w'as € inv(wo(;)). We see (w') tay > 0
for all ' € I;. The same argument shows (w'wo(I)) tay < 0 for all s € I;. Hence
(w)~ () € v (wo(T)).
Looking at minimal elements in the respective inversion sets, we see that w’ sends
{ay | 5" € T} bijectively to {ay | s’ € I;}. Hence I; = w'I(w')~! and the claim follows. [J

Theorem 98. (a) (W', S") is a Coxeter group.

(b) The action of WI' on VT is contains the geometric representation of (W', S') as
natural subrepresentation.

(¢) For spherical T-orbits I, ..., I,, the product
wo (1) - wo(In)

is length-additive in W if and only if it is reduced in W' .
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(d) WY inherits the Bruhat order, left weak order and right weak order from W.

Proof. For clarity, we denote the length function of W by ¢y : W — Z.

(a)

We saw that W is generated by ST and by construction, each element in ST is an
involution. Denote by ¢yr : W' — Z the corresponding length function.

It remains to verify the Weak Exchange Condition.

Let w € WT be written as w = wo(Iy) - - - wo(I,,) for spherical T-orbits Iy, . . ., I, with
n minimal. Let I be another spherical T-orbit such that fyyr(wwo(l)) < fyr(w).
If was < 0 for some s € I, we are done by the previous lemma. Otherwise, we find
wwo(I)as < 0, and then the previous lemma shows

gwl‘ (wwO(I)) > EWF (w),
contradiction.

Let V be the vector space with a formal basis Buwo(r) Where I runs through the
spherical I'-orbits. Choose real numbers k(1) wo (1) := af (apr). From the fact that
WL — GL(V!) is a well-defined and faithful representation of W', one deduces that
the numbers k(1) w, (1) @s defined above satisfy the properties needed to define a
geometric representation of W7.

Then the natural map V — VF,BwO(I) — oy is a WT-equivariant injection, by
construction.

If it is not length additive, it cannot be reduced for (W', S') using Lemma 28
for (W,S) together with the previous Lemma. Conversely, if it is not reduced for
(WL, ST, we find some index with wq(I1) - - - wo(Z;—1)as, < 0 using Theorem 26 for
(W', ST, and then the product cannot be length additive by Lemma 28.

For v,w e W', we have
by (wo) = by (w) + by (v) <= Lyr(wo) = Ly (w) + Lyr(v)

by part (c). Hence the statements on the weak orders follow. If v < w with respect
to the Bruhat order on W', we conclude that the same holds in the Bruhat order
on W using part (c¢) and the word criterion for the Bruhat order.

For the converse implication, we use induction on w and compare the statements of
Corollary 61 for (W, S) with (WL, ST). O

We call (W', SY) the folding of (W, S) under the action of I'. The Coxeter diagram
of (W', 8") can be determined using the following result:

Proposition 99. Let I,J be spherical T'-orbits and consider the parabolic subgroup
Wro-

(a) Wroy is finite if and only if the order m := m(wo(I),wo(J)) of wo(I)wo(J) in WT

is finite.
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(b) If m is finite, then
_ 26(we(I v J))
U(wo (1)) + £(wo(J))

(c) If m is finite and odd, then {(wo(I)) = £(wo(J)).

Proof. If w € Wy y is a longest element, then w € W7 since there can be only one
longest element. Moreover, we have war, way < 0. Thus w € W' is a longest element
as well.

If conversely w € (W7, J)F is a longest element, we must have was < 0 for all s €
and all s € J. Thus w € Wy, s is a longest element as well.

Now (W} 5, {wo(I),wo(J)}) is a dihedral group. It is finite if and only if the order of
wo(I)wo(J) is finite. In this case, the longest element is given by the alternating product
of m terms

wo = wo(I)wo(J)wo(l) - -
This expression must be length additive for (W, S) by the theorem. We conclude
€(wo) = [m/2]¢(wo(I)) + |m/2]E(wo(J)).

We may repeat the argument with I and J interchanged. So if m is odd, we must have
L(wo(I)) = £(wp(J)) and in any case we obtain
m
Hwo) = = (E(wo(I)) + Lwo(]))
This finishes the proof. O

Ezercise 100. Consider our standard example W = S3 and let I' = {1,wp}, acting on
(W, S) by conjugation. Determine the Coxeter diagram for (W', ST).

15 List of finite Coxeter groups

It is a fundamental result in the theory of Coxeter groups that we can enumerate all
finite examples.

Definition 101. A Coxeter group (W,S) is called reducible if there exist non-empty
subsets 51,52 € S with S = 57 L1 Sy such that s;s9 = sgs1 for all s1 € 51,89 € So.
Otherwise, it is called irreducible.

If (W, S) is reducible as above, then naturally W = Wg, x Wg, and W is finite iff both
Wg, and Wg, are. In this section, we describe all finite and irreducible Coxeter groups.

Ezample 102. For n = 1, the Coxeter group associated with the diagram of type
An;o—o—~-~—o
is Sp+1. The length of wq is given by w
For n = 2, the diagram A,, has a unique non-trivial automorphism. With I" generated
by this automorphism, ST consists of [1/2] elements. The quotient is of type Biy2)-
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Example 103. For n = 2, consider the Coxeter diagram
B,:e—e—0— ... — o0,

The Coxeter group of signed permutations was already introduced. The length of the
longest element is n?.
The diagram has no non-trivial automorphisms unless n = 2, in which case there is

one non-trivial automorphism (whose folding yields A;).

Ezxample 104. For n = 4, consider the Coxeter diagram

If (W, S) is of type B,, with sg being the isolated node on the left (i.e. m(sp,s) € {2,4}
for s € S), then we get a Coxeter group of type D,, by considering the subgroup of W
consisting of those elements w € W where the number of occurrences of sy in some /
any reduced word of w is even.

The longest element of type D,, has length n? — n.

There is a non-trivial automorphism interchanging the two leftmost nodes in the above
picture. The corresponding folding is of type B,_1. If n > 5, this is the only non-trivial
automorphism.

For n = 4, the automorphism group of the Coxeter diagram is the symmetric group
Ss, acting freely on the three outer nodes. If 1 # I < S5 fixes one of the outer nodes, the
folding is Bs. Otherwise, there are only two I'-orbits and the resulting Coxeter group
has type G2 = I5(6).

Ezample 105. For n = 6,7, 8, consider the Coxeter diagram

E, :

The corresponding Coxeter groups does not have any easily accessible description, but
it is finite with longest element of length 36, 63, 120 respectively.

The automorphism group is trivial unless n = 6, in which case there is precisely
one non-trivial automorphism (in the above picture, its the left-right symmetry). The
corresponding quotient has type Fj.

Ezample 106. Consider the Coxeter diagram
Fy:e— oé e — o,

The corresponding Coxeter group is finite with longest element having length 24. There
is a unique automorphism, and the resulting folding is of type I5(8).
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Example 107. The Coxeter diagrams
Hg:oéo—o’ H4:o§o—o—o

yield finite Coxeter groups with longest elements of length 15 resp. 60. There are no
non-trivial diagram automorphisms.

Ezxample 108. Let m > 3 and consider the Coxeter diagram

Iy(m) : L

The corresponding Coxeter group is the dihedral group of order 2m, with longest element
having length m. There is a unique non-trivial diagram automorphism, whose folding
has type Aj.

Remark 109. Call a Coxeter group crystallographic? if it is possible to choose the con-
stants ks o defining the geometric representation to be integers. This is equivalent to
m(s,s’) € {1,2,3,4,6,+0} for all 5,5’ € S.

The finite crystallographic Coxeter groups are precisely the Weyl groups known from
Lie theory. The crystallographic dihedral groups are I3(3) = Asg, I2(4) = B2 and I2(6)
which is called G5 for this reason.

If (W, S) is such a Weyl group, there is typically only one way to choose the constants
ks € Z up to a diagram automorphism. The only exception is the case B, in which
case there are essentially two ways. These choices yield root systems called B,, and C,,,
whose Weyl groups are isomorphic as Coxeter groups.

In the exercises of this section, you are allowed to use without proof that the above
list of finite and irreducible Coxeter groups is complete.

Ezercise 110. Let (W, S) be a Coxeter group of type B,,. Using the description in terms
of signed permutations, give a description of the Bruhat order similar to Theorem 76.

Ezercise 111. Call a Coxeter group simply laced if m(s,s’) € {1,2,3} for all 5,8’ € S.

(a) Show that a finite Coxeter group is a Weyl group if and only if it is the folding of a
simply laced finite Coxeter group.

(b) Look up a classification of affine Coxeter groups, e.g. [BB05, Appendix Al] or
wikipedia® and show that each affine Coxeter group is the folding of an affine and
simply laced Coxeter group.

(c) Show that the folding of an irreducible affine Coxeter group is again affine or finite.

Ezercise 112. Suppose that (W,S) is an irreducible Coxeter group and I' a group of
automorphisms such that (W', S") is of type Hs, Hy or Iy(m) for m # 3,4,6 (i.e. one
of the finite non-Weyl groups). Show that W = WT.

2There are other definitions of this notion, e.g. [Hum90, Section 6.6].
*https://en.wikipedia.org/wiki/Affine_root_system.
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16 Iwahori-Hecke algebra

Remember that for a Lie group G with Iwahori B and Weyl group W, we have
G= || BuB.

weW

The Hecke algebra of G is defined as
H(G) ={f:G—>C| f(bigb2) = f(g9) Vg€ G,b1,by € B}.

It becomes a C-algebra where we define multiplication via a convolution product

(if2)(g) = L filo(d) ) fale) dd.

As vector space over C, it has a basis given by the indicator functions T;, = 1p,p for
w € W. Assume that all subsets BsB for s € S have the same volume ¢ € C. Then one
computes

T Tws, ws > w,
e qTws + (g — DTy, ws < w.

It is common to change variables T, = ¢~¢(*)/2T,  which then satisfy

IS Tows, ws > w,
TwTs =< - -
v {Tws +(¢"? = ¢ YTy, ws <w.

Personally, I like to introduce the shorthand notation Q = ¢*/2 — ¢~¥/2. In any case,
there are many different but largely equivalent parametrizations of the Hecke algebra
around. Confer to [Bonl7] for a most general treatment.

This is a bit of a toy example, really one wants to use p-adic Lie groups and compact
subgroups instead of (G, B). Anyway, the goal of this section is to introduce an analogue
construction for arbitrary Coxeter groups.

Definition 113. Let A be an commutative ring and ¢i,¢2 € A. The Hecke algebra with
equal parameters H = H(W') associated to (W, A, q1,q2) is the A-algebra generated by

Tow, wewW
and relations
TwTyw =Typw, if f(ww') = £(w) + L(w'),
T82 =q111 + q2T%, if se S.

Lemma 114. (a) If q1 € A is invertible, then each T,, € H(W) is invertible in H(W).
If w = s is a simple reflection, its inverse is given by

Ts_l = (h_l(Ts - QQ)'
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(b) For any we W and s € S, we have

Tws, ws > w Tow, sw > w
Q1Tsw + C]sza sSw < w.

TwTs = TT, =
e {Q1Tws+q2Tw’ sSw < w. Y

Proof. (a) The formula for 7! is immediately verified. In general, T, is a product of
T, following a fixed reduced word of w.

(b) The claims are clear if ws > w resp. sw > w. If ws < w, we get a length additive
product w = (ws) - s, hence

TwTs = TwsTs2 = Tws(q1T1 + q2Ts) = q1Tws + q2Tw-
The other part is analogous. O

The following structural result is crucial for the remainder of the course.

Proposition 115. As module over A, the Hecke algebra H(W') is free over the basis
given by To, forwe W.

For the proof of the proposition, we define the A-module M to be free over W,

M := @ Avy,.

weW

For each s € S, denote by 75 € GL(M) the linear automorphism defined on basis vectors
by

T(U)* Vgw, SW > W
S w -
Q1Vsw + Q2Uy, SW < W.

Lemma 116. Let s,t € S such that m(s,t) < +00. Let 7,7 be the m(s,t)-fold compo-
sitions

T=:-0T30T40Ts

/
T =..-0Tt0T50Ty.

Then T = 7' as endomorphisms of M.

Proof. We show 7(vy) = 7'(vy) by induction on £(w). Write wg(s,t) for the longest
element of Wy where J = {s,t}.

If sw > w and tw > w, we get £(wo(s,t)w) = L(wo(s,t)) + ¢(w). Hence we directly
evaluate 7(vy) = Vyg(s,yw = 7' (Vw)-

Otherwise, we may and do assume without loss of generality that sw < w. Let
§',t" € {s,t} such that the two reduced decompositions of w(s,t) have the form

s't's - sts = wp(s,t) =t's't' - tst.
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Then we evaluate

T(Uw) =Tg OTy O--- 0Tt O TS(Uw) =Tg OTy O-++ 0 Tt(q1vsw + QZUw)
=(1Tg OTy O -+ O Tt(vsw) + q2Tg OTp O++- 0T O Ts(”sw)

.:dqlTs’ OTy ©-++0 Tt(vsw) + @274 OTgr O+ 0Tg O Tt(vsw)-
in

It is a simple calculation to verify that 7‘3 (v,) = vz + qa7p(v,) holds for all z € W.
Thus we calculate similarly

7' (V) =7'Ts(Vsw) = T 0 Tgr =+ 0 T5 0 T © T (V)
in:d.Tt/ OTy OTg »++OTgO Tt(vsw)
=(1Tg' """ OTgO Tt(vsw) + @74 O Tgr -+ O Tg O Tt(vsw)'
This finishes the induction and the proof. O

By Matsumoto’s theorem, we get that whenever w = s1--- s, is a reduced word, the
map

Tw = Tsy O+ O0Tgy,
depends only on w and not the particular chosen word.
Proof of Proposition 115. We get a map from H (W) to the endomorphism algebra End 4 (M)
sending T, to 7,,. We get a map from End (M) to M sending f to f(v1). Composing

both maps, we get an A-linear map from H(W') to M sending T, to v,. Hence the Ty,
are linearly independent. They certainly generate H (W) as A-module. O

Exercise 117. Compute the product Ty, - T, for the Hecke algebras of S3 and Sy, with
A being the polynomial ring A = Z[q1, ¢2].

Exercise 118. Show that for all w,w’ € W, the value T,, T, — Ty is divisible by go in
Exercise 119. Let wy,we € W and express the product 1y, T, using the usual basis as
T, Ty, = Z fwBTw37 fe EA:Z[Q17QQ]'

w3eW

Show that if £(wq) + €(w2) + £(ws3) is even (resp. odd), then only even (resp. odd) powers
of g occur in the polynomial f,, € Z[Q)].

17 Braid group

Definition 120. Associated to a Coxeter system (S, m), we associate the Braid group
B presented by the generators S and relations
/ / / /
§58§ - = §sss- .
— —
m(s,s’) terms  m(s,s’) terms

If (S,m) is of type A,—_1, we denote B by B,.
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Certainly the Coxeter group W is a quotient of B, so S, is a quotient of B,. The
braid group B, is infinite in general. It has the following geometric interpretation:
Consider a sequence of smooth paths in [0,n] x [0, 1]

Po (170) - <O7O)7
P1 1(1, 1) — (O, 1),

pn:(1,n) = (0,n)

such that any two paths p;,p; intersect only at a finite number of points. To each
such crossing, we moreover record information on which path lies above the other one.
(picture)

Such a diagram, up to smooth stretching and moving of paths above and below each
other, can be called a braid. These form a group by composition (picture). We can
associate s; € S to the braid consisting of straight paths p; : (1,7) — (0, ) for j # i,i+1,
pi: (1,4) = (0,44 1) and pit+1 : (1,3 + 1) — (0,4) such that p; lies above p;11 (picture).
The resulting group of braids is isomorphic to B,,.

Each braid can be associated to a union of knots, or links, in R? by connecting (0, 1)
to (1,4) outside of the box [0,n] x [0,1] (picture). The same link may have different
braid presentations, but there is some sort of equivalence relations between braids.

So the knot theorists are interested in representations of the group B,, say over the
complex so B,, — GL,(C). Any two generators of B,, are conjugate, so representations
with only one eigenvalue over C (e.g. one-dimensional representations) must be of the
form s; — diag(c, ..., c) for some constant ¢ € C*.

Let us consider a representation p : B, — GL,(C) such that each p(s;) is diagonaliz-
able with at most two eigenvalues, e.g. for n = 2. By conjugation, they have the same
eigenvalues, say A1, Aa. We get

(p(si) = A1) (p(si) — A2) =0,
— p(Si)2 = ()\1 + /\g)p(si) — A Ao.

The fact that p is a representation is equivalent to

p(si)p(s;) =p(sj)p(si) if [i — j| =2
p(si)p(si+1)p(si) =p(si+1)p(si)p(sit1)-

If we put ¢z = —A\1 A2 and g2 = A1 + A2, these representations are the same as repre-
sentations of the Hecke algebra H(S,) defined over C. We refer to the very remarkable
article [Jon87] using this correspondence to define an important invariant of links.

18 Kazhdan-Lusztig polynomials

We specialize to the Hecke algebra defined over A = Z[qil/ 2] with parameters ¢; = ¢
and g2 = ¢ — 1. In other words, (Ts + 1)(Ts —q) =0 for all s € S.
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Kazhdan-Lusztig construct a large class of irreducible representations of H (W), which
we review in this section. In particular, specialized to W = S,, and ¢ = 1, all irreducible
representations of the group algebra C[S, ] arise from their construction.

The ring A has an automorphism induced from ¢%/2 —1/2
a — a.

= q

which we denote by

Lemma 121. There is an automorphism of rings H(W) — H(W) sending
aly, — al}, = ETJL.

Proof. Tt suffices to see that the T, satisfy the defining relations of the Iwahori-Hecke
algebra. If f(ww') = l(w) + (w'), we get

Ty Tw =T, Ty 1 = (L1 Tw1) " = Tyt = Twnwr-
Let now s € S. We compute
T, T,=T7'T 1
Observe T, ! = ¢~ Y(Ts + 1 — q) so that
(T71)? =q (T2 + 21— ) Ts + (1= ¢)*) = ¢ 2((a = DT + g+ 2(1 = ¢)T5 + (1 — ¢)°)
= (1= (Ts+1-q)+q)=q¢ ' (1-q)T; ' +q ' =q—1 T, +7
So the relations are satisfied for T, - Ty. This finishes the proof. O

Definition 122. For w € W, we write

Ty = Y Rowqg "T, € H(W)
veV

for polynomials R, ,, € A, called the R-polynomial associated with v,w e W.
They satisfy the following properties.

Lemma 123. Letv,we W and s€ S.

(a) If ws < w then

R _ Rvs,wsa Zf vs <,
v,w = ;
qus,ws + (q - 1)Rv,w57 Zf VS > .

(b) If w =1, then

Ry = 1, ifv=1,
’ 0, ifv#1.

(¢) If v < w in the Bruhat order, then R, ,, is a monic polynomial of degree {(w) —{(v)
in Z[q]. Otherwise, Ry, = 0.
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Proof. (a) We compute

Z Ru,wqig(u)Tu :ﬁ = Tws : Ts = Z Ru,wsqig(u)TuTsil

ueW ueW
= > Ruwst " Tus + Y Ruwsg ™ (q— 1Ty +T0s).
ueW ueW
us<u uUS>u

Let us compare the A-coefficients for T, in the above expression. If vs < v, then
the left sum does not contribute to T, and the right sum contributes the value
RUS’wsq_g(”)Tv coming from u = vs.

If vs > v, then the left sum contributes quS,qu*E(”)Tv coming from u = vs and the
right sum contributes (¢ — 1)Rv7wsq_£(v)Tv coming from u = v.

Indeed we have T} = Tj.

Induction on ¢(w), the inductive start for w = 1 being clear. In the inductive step,
pick s € S such that ws < w and let v = min(v,vs). By the lifting property of
Bruhat order, v < w if and only if v/ < ws.

So in case v € w, we get v € ws and also v € ws, showing that R, ,,, being a linear
combination of Ry s and R, s, is zero.

If v < w, then by induction we see that R, ,s is a monic polynomial of degree
l(ws) — L"), If vs < v, we get Ry = Ry s and L(sw) — L(v) = L(w) — £(v),
proving the claim. Otherwise, we get

Rv,w = qus,ws + (q - 1)Rv’7ws

with Ry, having degree < ¢(ws) —¢(vs) = £(w) —€(v) — 2 and R,y ,,s being monic
of degree ¢(ws) — £(v") = £(w) — £(v) — 1. The induction is complete. O

Theorem 124. There is a unique basis {Cy}wew of the A-module H(W') satisfying the
following properties: Cy, = Cy, for allw e W and

C, = Z (—1)l)+tw) glw) 2=t BT e (W)

VW

for polynomials P, ., € A of g-degree < 1/2(¢(w) — ¢(v) — 1) such that Py, = 1.

Proof sketch. Uniqueness: Using the definition of R-polynomials, the condition C,, = C,,
expanded as required implies for u < w that

QU EE L -t/ Y (L)) )2 ) TR

u<vsw

In an inductive sense, we may assume that the P,,, are uniquely determined for u <
v < w. Now

t—tw)2p
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is a polynomial in ¢~'/2 without constant term. Applying the involution - to it yields
a polynomial in ¢'/2
polynomials possible, so P, is uniquely determined by the P, ,, for u < v < w.
Existence: Use the above relation to construct suitable elements C,, which are invari-
ant under the involution ~ and have the required shape. Then the basis property is easily
verified. O

without constant term. There are no cancellations between such

Definition 125. The polynomials P, ., € Z[q| are called Kazhdan-Lusztig polynomials.

Exercise 126. Calculate the R-polynomials for W = S3. With the given relation in the
above proof, calculate the Kazhdan-Lusztig polynomials.

Exercise 127. Verify the full proof of existence and uniqueness of Kazhdan-Lusztig poly-
nomials [KL79, Section 2.2].

Ezercise 128. Show that P, ,, # 0 whenever v < w.

19 Kazhdan-Lusztig representations

We continue with the notation from the previous section.

Definition 129. For v < w in W, let u(v,w) be the coefficient of g =t@)=1)/2 iy
P, . If v > w, we define p(v, w) := p(w,v).
We write v < w if v < w, ¢(w) — £(v) is odd and u(v,w) # 0.

Lemma 130. Let se€ S and we W.
(a) If sw < w, then TsCy = —C,.
(b) If sw > w, then
q*1/2TSC'w = Cygyp + q1/2C'w + Z p(z,w)Cy,
with the sum taken over all z < w with sz < z.

Proof reference. Cf. [KL79, Sections 2.2, 2.3]. O

We see that the basis elements C,, € H(WW) are not invertible, unlike their 7, coun-
terparts. This is the exciting aspect from a representation theoretic point of view!

Definition 131. We define the left cell order <* on W to be the partial order generated
by the relations v <* w whenever the following two conditions are satisfied:

(a) v <wor w < v and

(b) there exists s € S with sv < v and sw > w.

The right cell order is defined by v <% w if v™! <% w. It has an analogue description if
we replace (b) by vs < v and ws > w.

The two-sided cell order is the partial order generated by all pairs v < w such that
v<Fworv<fw.

For e € {L, R, LR}, we write v ~* w if v <* w <* v.

46



It is rather straightforward from Lemma 130 to see the following:
Proposition 132. Let we W.
(a) The left ideal H(W)Cy < H(W) is a free A-module with basis given by all C, for
v<lw.
(b) The right ideal C(yH(W) < H(W) is a free A-module with basis given by all C, for

v <P w.

(¢) The two-sided ideal H(W)CpH(W) < H(W) is a free A-module with basis given by
all C,, for v <M. O

Definition 133. The equivalence classes of ~*, ~% ~If are called left/right/two sided
cells in W. Given such a left cell C, the left cell module for C' is given by

(HW)w)/T

for some w € W where I is the left ideal in H(W) generated by all C, for v <% w.
Similarly, right cells induce right cell modules and two-sided cells induce cell bimodules.

We may consider the case of a finite Coxeter group and specialize A — C, ¢ — 1.

For the W = S, being the symmetric group, it follows that the left cell representa-
tions are irreducible and cover all irreducible complex representations. For general finite
Coxeter groups, these complex representations may be reducible, but contain every ir-
reducible representation as a subrepresentation.

The theory of Kazhdan-Lusztig polynomials, cells and representations is subject to
active research and many conjectures.

20 Reflection orders

The concept of reflection order appears in different places of the theory of Coxeter groups.
These orders can be used e.g. to give a convenient description of R-polynomials.

Definition 134. A reflection order < on ®* is a total order such that for all o, 3 € &+
with o < 3 and scalars \, y € R-q satisfying Ao + p3 € ®*, we have

a < da+ pp < p.
Ezample 135. For W = S,,, the positive roots can be identified as
Pt ={e; —ej|i<j} = R™
Then the lexicographic order is a reflection order on ®*, i.e.
(e; —e;) < (ey —ej) = (i<i)or(i=1andj<j).

Indeed, if o < 3 are such that o + § € ®*, we must have a = ¢; —¢;,8 = e; — ¢, for
indices i < j < k. Now a+ 3 = e; — e, sits between « and 3 as claimed. There are
many more reflection orders on ®*.
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The first non-trivial observation of the theory of reflection orders is the following:
Proposition 136. There exists a reflection order < for every Cozeter group (W,S).

Proof. Choose a well-ordering < on S and for each s € S a positive scalar A > 0. For
a =3 gCss € DT we define

v(a) = (Asts)ses € RSy, o(a) = Y (v(e)) € Rsg and §(a) = v(a) € R,

o)

We define the order < on ®* by comparing the vectors o(«a) lexicographically. Explicitly,
a < f if and only if there exists s € S such that o(«)s < 0(5)s and

Vs < s: O(a)y = 9(8)g-

Observe that the value of s is uniquely determined and this defines a well-defined and
total order on ®*. If now a < 3 with s € S as above and v = \a + uf € &*, we get
o(y) = Ao(a) + po(B). In particular

_ Ao (@)v(a)s + pa(B)i(B)s

O(a)s <(7)s = Ao (@) + po(B) < 9(B)s

and for each s’ < s, we get

. _ - _ Ao(@)o(a)y + po(B)0(B)sy -
O(a)y =0(y)y = (o) & 10 (B) =9(B)y-

This verifies the reflection order property. ]

For finite Coxeter groups, we have the following characterization due to Dyer [Dye93].

Lemma 137. Let W be finite with longest element wg and let < be a total order on ®.
Then the following are equivalent.

(a) The order < defines a reflection order on ®7.

(b) There exists a (unique) reduced word wy = Sqy * * * Sa,, Such that 51 < -+ < (B, where

n

Bi = Sop " Saiqn (al)

Proof. (a) = (b). Enumerate the positive roots as ®* = {; < --- < 3,} and define
for i = 1,...,n the root

@i =sp, - sp, (Bi) € @

We claim that all these roots are simple (in particular positive), via induction on n — 3.
If i € {1,...,n} and the claim has been proved for all i’ > i, note that

Sﬁn .o .85i+1 = SaiJrl . 'San-
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Moreover, we have 1 < sg, < --- < sg, ---sg,,, such that the right one of the above
words is reduced and

inv(saz‘+1 T San) = {B’i+1’ ) Bn}

In particular, o = Sq,,, - Sa,(8i) € ®*. If o was not simple, we could write a; =
A171 + Aaye for positive scalars A1, A2 > 0 and distinct positive roots v1,72 € @1 (e.g.
by choosing a simple root which gets sent to a negative root under s,,). Put 5; =
San **SaaVjy J = 1,2, so that ; = A1 + AoFe.

If 4; is positive, then the condition v; = Sa,,, - - - Sa,7j € ®* implies §; < §;. Similarly,
if :Yj € &~ then —’Nyj > B.

In case both 41 and A9 are positive, they must both be < 3; and then the fact §; =
A1 + A2%2 contradicts (a).

If, say, 41 is positive and 75 is negative, we get

—A2 > Bi = 1, =0 + (=),

contradiction again.

Finally, if both 4; and 49 are negative, we get 3; € ®~ which is absurd. This finishes
the induction.

The inductive proof shows moreover that

80(1 . e SOtn

is a reduced word of an element sending every root in ®* to a negative root. This is the
desired reduced word for (b).

(b) = (a). If i < j are indices such that 8 := \3; + uf; € @, note that
inv(sa, - Sa,) ={Bi,---+Fn}
iHV(Saj+1 cee San) :{Bj+17 ce ,ﬂn}.

Since both f; and f; are in inv(sq, - - - Sa, ), so must be §. Similarly, 8 cannot be in
inv(sa;,; *** Sa,)- Hence B e {Bj1,...,B8i-1} O

Using Matsumoto’s theorem to pass between different reduced words for wg, one can
pass from one reflection order to another using a sequence of well-defined operations, cf.
[BFP98|. A typical application of reflection orders is the following result, whose proof
we will not state.

Theorem 138 ([BB05, Theorem 5.3.4]). Let < be a reflection order and v,w € W. Let
P be the set of all sequences (aq,...,ay) of positive roots such that

o a1 << ay and

o V< USq < < USq, tSa, = W.

n
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Then the R-polynomial of v, w is given by

Ry = qE@—6)2 ST (g2 _ g=1/2yn e g[g). O

(a1ye..,an )EP

Exercise 139. List the reflection orders for Ss, Sy.

Exercise 140. Assume that W is a finite group with reflection order < and that
{ag < - <y} c @
are some positive roots such that a linear combination
Ao + -+ Aoy, =ae dF

is a positive root as well, where A1, ..., A\, € Ryg. Prove a1 < a < ay,.

21 Reflection subgroups

Proposition 141. Let W’ < W be a reflection subgroup, i.e. such that T' := W' n'T
generates W'. Define

Si={teT |Vt#t eT : Ltt') > L(t)}.

Define ® < @7 to be the set of all positive roots o € ®T such that s € W' (50 54 € T').
Call a root ac € @' simple for W’ if for any linear combination

o= Z B eV, AgeRyg almost all zero,
Bed’

we must have

1a aZﬁ?
Ag =
0, a#p0.

(a) (W', S") is a Cozeter group.

(b) A root a € ® is simple for W' if and only if sq € S’. Under that identification, the
geometric representation of W' is isomorphic to the action of W' on the subspace of
V' generated by the simple roots for W’'.

Proof. W' generated by S’: For this, it suffices to see that every element ¢t € T” is
a product of elements in S’. We show this via induction on fy (t). If t € S’ (e.g. t is
simple), there is not much to show.

Otherwise, we find t' € T' with fy (t't) < fyw (t). Pick a reduced word

t:Sal"'sag
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such that

inv(t) = {ow, Sa,(—1),- -+, Sa, - Sas (1)}

Writing ¢t = s, we see that o must appear in this list. If it appears in position ¢, then
t = Sy " Sa; ** Sa;, Which means (by reducedness) i > (¢ — 1)/2. Considering t = ¢!,
a similar argument shows ¢ < (¢ —1)/2 such that i = ({ —1)/2 and ¢ = Sa, - Sa; "+ * Say
is reduced.

We may and do assume that a; = ayy1—; for all j € {1,...,¢}. Write now ¢’ = sg. Up
to replacing t’' by tt't, we may assume that

B =Sy Sa; ()

for some index j < i = (¢ —1)/2. If j = i, we would get t = ¢/, contradiction. Hence
7 <1 and

by (t') =lw (Say -+~ Sa; =+ Say) < 2j —1 <,
by (t'tt) =lw (S0, Sa,

; e SO‘(Z—l)/Q .. Sag+1_]' . o SO[[) g g — 2

By induction, both ¢’ and #'tt’ lie in the subgroup of W' generated by S’. Hence so does
t, finishing the proof of W’ being generated by S’.

Characterization of S’. For a € @', the condition s, € S’ is equivalent to saying
that for all a # 8 € ® we have s,(3) € @ (or equivalently in @’).

Suppose first that s, € S’. We have to show that « is simple for W’. So consider any
linear combination

a= ) AsB

Bed’

as above. Apply s, to write

—a = Y Agsa(B) = —dact+ Do Agsa(B).

ped’ a#Ped’

So (Aq — 1) is a Ryg-linear combination of positive roots, showing A\, > 1. Now

D A8 =(1-2)a<0,

a#Bed’

so that Ag = 0 for all & # 5 € ®'. The claim follows.
Suppose now conversely that « is simple for W’. If we had s,(8) € ®~ for some
a# Bed we got

a=["(a)B = sa(f)

as a linear combination of two roots in ®, both not equal to «. This contradict the
condition of a being simple for W”.
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Weak Exchange Condition. Let w = t;---t, € W’ be reduced for (W', S") and
o € @ with EW/(’LUSQ) < EW/ (w)
If wa < 0, we find an index ¢ with

ti-tpa <0, ti41---tha=0.

So 8 =tiy1--tha € O satisfies t;3 < 0. Since t; € S’, the above argument shows t; = sf3
and we get the Weak Exchange Condition.

If wa = 0, the same argument proves ly/(wsy) > Ly (w).

Geometric Representation. Define coroots av : V' — R for all « € ®* such that
Sa(v) = v — Y (v)a. This yields a faithful representation of W’ on the subspace of V
spanned by ®’. We can verify the defining properties of the geometric representation by
noticing that each root in @’ is a Rx-linear combination of the simple roots for W’. []

Definition 142. A dihedral reflection subgroup of W is a subgroup W’ generated by
two reflections.

Lemma 143. Let < be a total order on T. Then the following are equivalent:

(a) We get a reflection order on ®* defined by
a<f:e== 5, <83
(b) For every dihedral reflection subgroup W' < W with canonical generators S’ as in
Proposition 141, we may write S" = {t,t'} such that
<ttt << <P <ttt <t

Proof. We may certainly write S” = {sq, s3} for some positive roots «,  which are simple
for W’. The reflections listed in (b) come from the roots

a, sg(a)sasp(a), ..., spsa(B), sa(B), B-

Carefully analysing the geometric representation on dihedral groups, we see that <
defines a reflection order on @' if and only if (b) is satisfied. Of course, if (a) is satisfied,
then < is a reflection order on .

Assume now that (b) is satisfied. Let o, 3 € @1 and A, u € R~ such that Aa+pus € ®+.
Let W' be the group generated by s, and sg. Then < being a reflection order on @’
implies that o < Aa + puf < B or vice versa. Hence (a) follows. O

Exercise 144. Prove the claimed characterization of reflection orders on dihedral groups.
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22 Demazure products

In this section, we specialize the Hecke algebra further to the case ¢ = 0. Up to slightly
optimizing on signs, we get the presentation
TwTy =Ty if L(ww) = L(w) + £(w'),
T? =T, ifse€ S.
Proposition 145. Let wi,wy € W be two elements. Then Ty, Ty, has the form T, for

some z € W. Fach of the following three sets has a unique maximum with respect to
Bruhat order, which is moreover equal to z.

{wijws | w] < wy and L(wiwy) = £(w)) + £(ws)},
{urwh | wh < wy and L(wiwh) = £(wy) + £(w))},
{wiwh | w] < wy and wh < wa}.

Proof. Pick a reduced word wo = s1 - - - s,. Iterating the above relations n times, we see

Ty T, = Twlsz-l--‘sl-

k

for some indices 1 < i1 < --- < i, < n. In particular, the element z as required exists, is
uniquely determined and an element of the second and third set. A completely analogous
argument shows that z also lies in the first set.

It remains to show that every element in the third set is < z in the Bruhat order.
We do this via induction on f(wsg). If wy = 1, we get z = w; and the claim is clear.
Otherwise, pick a simple reflection s with was < wa, and let Ty, Tryys = Tor. If w) < wy
and w) < wa, we get min(wh, whHs) < wes and hence

w min(wh, whs) < 2’ < z.

So focus on the case whs < wh. Then wjwhs < z. Since zs > z, we get wijw) < z as
well. This finishes the induction and the proof. O

Definition 146. For wi,wy € W, the element z in the above proposition is called
Demazure product of wi,wy and denoted wy * wy. Note that (W, %) is a monoid but not
a group.

Corollary 147. In the general setting of a Hecke algebra (before the specializations),
consider the product

Twlng = Z fwg,ng-
’LU3€W

Then fuy, = 0 unless w3 < wy * wy. We have

fw1*w2 = qg(w1)+l(w2)_z(wl*w2)

(mod q1).

If wg # wy * wa, then f,, =0 (mod q1).
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Proof. Since the specializations ¢ — 1,q1 — 0 yield the above 0-Hecke algebra, the
congruence statements are easily verified. Use that by the definition of the Hecke algebra,
fws is always a sum of monomials ¢j" ¢5? such that £(w;) + ¢(ws) — £(w3) = 2n1 + ne.
From the definition of the Hecke algebra, it is clear that any ws with f,,, # 0 must be
of the form w3 = wyw} with wh < ws. O

We get similar statements when expanding 7, C\,, using the basis C. One can show
that the Kazhdan-Lusztig polynomials P, ,, simplify to 1 under the specialization ¢ — 0.

Ezercise 148. Show that if W is finite, then wg * w = w * wy = wq for all we W.

Ezercise 149. Show that (wy * wz) ™! = wy ' # wy .

23 Finiteness results

For this section, assume that S is a finite set.
Let us write

Tw1T’U}2 = Z fw3Tw37 fw3 € Z[Q1?q2]

ngW

for a general Hecke algebra. It was an important conjecture of Lusztig, which has been
proved now, that the go-degree of f,,, is always bounded by a constant depending only
on (W, S). In this section, we demonstrate the baby version claiming that

sup{l(w1) + l(wa) — l(wy * wa) | w1, we € W} < +00.
Definition 150. For w € W, we define the cone type of w to be
Clw) ={w e W | L(ww) = l(w) + L(w')} = W.

For individual w € W, the cone type C(w) € W may typically be an infinite set. It
interesting to observe that many distinct group elements may have the same cone type.
We even have the following striking result.

Theorem 151. There are only finitely many different cone types for W, i.e. the set
{C(w) |lweW}c 2V
is finite.
We obtain the following consequences for Demazure products.

Corollary 152. For wy,we € W, the value of
wiwn + woyuwy! e W
depends only on the pair (C(wr),C(wy 1)) € 2V x 2W. Moreover,
0 < l(wr) + L(wg) — L(wy * wa) < N

for some constant N € Z depending only on (W, S).
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Proof. If C(wy) = C(w}) and C(wy ') = C((wh)™1), we get
wi !t (wy * we) = max (e < wy | Wy € Clwy)) = (wh) " (w) * ws).

A similar argument proves (w}*ws)wy ' = (w*wh)(wy)~'. This shows the independence
claim.
We calculate

Lwy) + L(we) — L(wy * wy) = L(wy) — E((wl * wg)u@l) < €<wf1(w1 * wz)’U);l).
There are only finitely many possibilities for the right-hand side. O

The proof of Theorem 151 is rather involved, cf. [BB05, Chapter 4]. We can only
outline the major steps.

Definition 153. Let o, 3 € . We say that o dominates 3 if any w € W such that
wa € P satisfies wf e O
We say that « is humble if it only dominates itself and not other root.

Observe that simple roots are humble.

Lemma 154. Let o € ®+ be humble and s € S such that o # as. Then sa is not humble
if and only if the following conditions are both satisfied.

e a)(a) <0, or equivalently sa € o + Ropas and
e The group generated by s, sq is infinite, or equivalently

a) (a)a (as) = 4.
Proof. First assume that both stated conditions are satisfied. We claim that sa dom-
inates ag. Indeed, if this was not the case, we could find some w € W with wsa €
¢~ and wags € ®T. Then a,as € inv(ws), so the infinitely many roots of the form
Aa + pas, A, > 0 are also in inv(ws). This contradicts ws having finite length.

Now assume conversely that sa is not humble. Then it dominates a root 5. If 5 # as,
then s3 € ®* and o dominates s3, contradiction. Hence s dominates a; and no other
root. Certainly, sa would dominate every positive linear combination of a and s, so
as must be the only such linear combination. In particular, o ¢ Rsgsa+Rsgas, showing
the first condition. The second one follows from analysing the dihedral group generated
by s and s,. If it is finite, we would find an element w in that group with wa, € ®*
and wsa € ¢~ O

Corollary 155. For w e W, denote the set of humble inversions by
huminv(w) = {f € inv(w) | B is humble}.
If s € S satisfies ws > w, then

huminv(ws) = {as} U {sf | 5 € huminv(w) and s§ is humble.}.
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Proof. Since inv(ws) = {as}usinv(w), the inclusion € is clear. For the reverse inclusion,
pick as # S € huminv(ws). Then sf € inv(w) and § is humble. We have to show that
sB is humble as well. If it was not humble, we would get infinitely many roots of the
form A\S + pos € inv(ws) for A, > 0, which is impossible. O

If w,w' € W and w’ = s1--- s, is a reduced word, we have
w' e O(w) = Vi: lwsy---s;) > l(wsy---5,-1) < Yi: s ¢ huminv(wsy - s;-1).

Using the above corollary, the last condition only depends on the set huminv(w) < ®*.
So Theorem 151 follows from the following result.

Proposition 156. There are only finitely many humble roots.

For the proof of the proposition, observe that if « is a non-simple humble root, we
can find a simple root ag with sos < s4, or equivalently sa € a + Rgas. Then sa is
humble as well and we get a sequence

S1 S2 Sn—1
=0 —> Qg — - —> Qp

of humble roots ending in a simple root a,,. If there are infinitely many humble roots,
there exist such sequences of arbitrary length.

One has to develop the theory of humble roots a lot further to associate some in-
variants for which there are only finitely many possibilities and which are, in a sense,
monotonic with respect to such sequences. If such sequences are longer than the number
of invariants, we would get adjacent humble roots o 2> 8 with identical invariants, and
can use this to derive a contradiction.

Ezercise 157. Show that if W is finite, then the number of distinct cone types is equal
to the number of elements in W. Moreover, show that every root in a finite group is
humble.

Ezercise 158. Show that if W is infinite, then each cone type C(w) is an infinite subset
of W.

Ezercise 159. Give an example of a Coxeter group (W,S) and two distinct elements
w1, wg € W such that C'(wy) = C(ws).

24 Conjugacy classes

The structure of conjugacy classes in Coxeter groups is of central interest.

Definition 160. Let O € W be a conjugacy class and w e W.

(a) We write £(O) := min{l(w) | w € O} and Oy, for the elements in O of length ¢(O).

(b) If s € S and ¢(sws) < £(w), we call sws an elementary cyclic shift of w and write
w > sws (not to be confused with the similar, but incompatible notation used for
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Bruhat order). We call w' € W a cyclic shift of w if there is a sequence of elementary
cyclic shifts

51 52 Sn /
W=W —wW2 —> ' ——>Wp4+1 =W.
We write w — w’ to indicate this relation.

(c) Ifv e W satisfies £(wv) = £(w)+£(v) and £(v~wv) = £(w), we call v~ rwv elementary
strongly conjugate to w. We say that w and w’ € W are strongly conjugate if there
is a sequence

/
W=W,...,Wp =W

such that w; and w;41 are strongly conjugate.

Observe that if w — w’ and ¢(w) = ¢(w'), then also w' — w and w’ is strongly
conjugate to w.

Theorem 161 ([Marl8]). Let we W and O € W its conjugacy class.
(a) There is an element w' € Opiy such that w — w'.
(b) If w,w' € Opin, then they are strongly conjugate. O

Marquis’ proof is rather subtle, generalizing previous works of Geck-Pfeiffer for finite
Coxeter groups and He-Nie for affine ones.

Ezxample 162. In the group S,, the conjugacy class of an element w written in cycle
notation

w = (7:1,17 <o 71‘1,0(1))@2,17 ce 7i2,c(2)) T (imh ) Zn,c(n))

with ¢(1) = .-+ = ¢(n) is determined by the vector (¢(1),...,¢(n)), up to adding and
removing trivial cycles. A typical minimal length element is given by

(1,2,3)(5,6)(10,11,12,13).
The conjugacy classes in S3 are given by

{1}, {(1 2),(2 3), (1 3)},{(1 2 3), (1 3 2)}.

Note that the second class O has the simple reflections as minimal length elements
Omnin = {s1,s2}. Certainly we do not have s; — so. However, the element v = s25;
satisfies s;v = wp, which has length 3, and v~lwy = so.

Definition 163. Let H = H (W) be the Iwahori-Hecke algebra, defined over some ring
A and some q1, ¢z € A, such that ¢g; € A*. The commutator [H,H] of H is the A-module
generated by

[h1, ha] = hihy — hohy, hi,hy € H.

The cocenter is the quotient A-module H/[H, H].
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Lemma 164. (a) If wi,wy € W are strongly conjugate, then the images of Ty, and T,
in the cocenter H/[H,H] coincide.

(b) The cocenter H/[H,H] is generated, as A-module, by the images of T, where w € W
runs through all elements which are of minimal length in their conjugacy class.

Proof. (a) It suffices to prove the claim for elementary strongly conjugate elements. If
v e W satisfies £(w1v) = £(wy) + £(v), l(vwz) = £(v) + £(w2) and w1v = vws, we get

T, = Ty = T Tpyo = Ty Ty, = Tow,  (mod [H, H]).

(b) Induction on ¢(w). If w has minimal length in its o-conjugacy class, we are done.
Otherwise, we find by Marquis’ theorem a sequence

S1 Sn
W =Wy — " —> Wptl

with l(wq) = -+ = l(wy) > l(wp4+1). By (a), we get Ty, = Ty, (mod [H,H]). We
compute

Twn :Tsnwn_Hsn = TsnTw T

n+1-Sn

ETgnTwn+1 = (qQTSn + ql)TwnJrl = q2T5nwn+1 + qlTwnJrl (mOd [H7H])
Since £(wp+1), l(swp+1) < ¢(w), we are done by induction. O

Definition 165. For a conjugacy class O € W, write Tp € H/[H,H] for the image of
T, for any w € Opin.

This is well-defined by Marquis’ theorem. We saw above that these generate H/[H, H]
as A-module.

Theorem 166 ([HN14]). Suppose that (W, S) is spherical or affine. Then H/[H,H] is
a free A-module with basis

{To | O <€ W conjugacy class}. O

It is an open problem whether the theorem holds for arbitrary Coxeter groups. But
at least, we have the following map:

Definition 167. Define
T:H— A,
to be the A-linear map sending T, for w € W to

1, w=1
(T, =<" ’
(Tw) {0, w # 1.
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Lemma 168. We have 7(hh') = 7(h'h) for all hyh' € A. In other words, we get a
well-defined map

H/)[H,H], h+[H,H]— h
Proof. Observe that

f(w1) —1
w]_ == w2 B

ql 9
T(Tw Towy) =
( w1 ’LUQ) {O, wq ;éw2_1.

Then both statements follow immediately. O

Definition 169. If the statement of Theorem 166 holds true, we define the class poly-
nomials fy, 0 € A for we W and O € W via the identity

Ty+[H,H] = ), fuoToeH/[H,H].
ocw

Corollary 170. If W is spherical, the center of H is a free A-module with basis

¢
zo 1= Z fwoTy-1q; (w)
weW

indexed by the conjugacy classes O < W.

Proof. Define the scalar product
HxH— A, (h,h") — T(hh').
Let h € H. We have

h central in ‘H
<= hh/ = Whfor all W' e H
<= 7(hW'Ty-1) = 7(Ty-1W'h) for all K € H,we W
< 7(hW'h") = 7(W"h'h) for all b/, h" € H
« 7(hh) = 0 for all h e [H,H].

So the center of H is the orthogonal complement of [H,H] under this scalar product.
Thus, the composition

Z(H) — H — H/[H,H]

yields an isomorphism of A-modules.
Let now h € H by central. The above calculation shows that

HI[H,H]) — A, B+ [H,H]— 7(hK)
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is well-defined. For w € W, we compute
r(WT) =7 (h(Ty + [H,H]) = (R Y, fwoTo)
= Y fwor(hTo) = 3] t(z0Tw)r(hTo) = T<ZO on(hTO)Tw>.

ocw ocw

Thus

h = Z T7(hTo)zo.
ocw

So the center of H, which is free with rank equal to the number of conjugacy classes in W,
is contained in the submodule of H generated by the elements z». This is only possible
if the center of H is equal to that submodule and the zp are linearly independent. [

A peculiar class of elements, which plays an important role in different aspects of
Coxeter group theory, are the so-called straight elements.

Definition 171. An element w € W is called straight if for any n > 1, we have
L(w") = nl(w).
Lemma 172. Let we W and C € R such that for all n = 1, we have
L(w") = nb(w) — C.
(a) w is straight.

(b) Let O be the conjugacy class of w. Then Omin is given precisely by the straight
elements in O.

Proof. (a) For n,m > 0, we get
ml(w") = L(w™") = mnl(w) — C.
Divide by m and take the limit m — oo.
(b) If w’' = v~lwv, then
(((w)") = € wm) € [E(™) — 26(v), ™) + 20(0).
If ¢(w') < l(w) — 1, we would get
(W)™ < nl(w') < nl(w) —n = L(w") — n,

contradicting the above estimate. Hence w € Opi, and all straight elements in O are
in Opin. If conversely w’ € Opin, we get £(w') = £(w) so the above estimate shows

(")) = nl(w') — 26(v).

Hence w’ is straight by (a). O
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Theorem 173 ([Marl8]). Let O be a straight conjugacy class, i.e. containing a straight
element. Then for any wy,ws € Onin, we have wy — ws. O

So straight elements are nice, but how do we find them?

Proposition 174. Let w e W and consider the iterated Demazure products

*,1

wr i =wrwrwx---xwe WL

Define wy, := (w*" )" lw*m e W.

(a) The sequence (wy)n>1 stabilizes, i.e. there is an index N such that wy = w, for all
n>=N.

(b) The element wy, 1= wy as in (a) is straight.
(¢) If w' is strongly conjugate to w, then (w')y is conjugate to wey,.

Proof. (a) By definition of the Demazure product, observe that the value of w, only
depends on w and the cone type C(w*"~1). Moreover, we have w*"~1 <f w*" in
the right weak order. Hence

Clw*) 2Cw*?*) 2.

By finiteness of cone types, this sequence stabilizes (if S is infinite, consider the
parabolic subgroup generated by the support of w, which is always finite). Hence
the sequence (wy,) stabilizes.

(b) By definition of the Demazure product, we get for every n > 1 that
C(w*m Y = 2(w*™) + (wy,).
Thus

’I’LE(U)N) _ K(w*’N"'n) o Z(w*’N) < f((w*’N)_lw*’N'i—n) _ E(w%)

(c) It suffices to show this for elementary strongly conjugate elements. So let v € W
such that

L(wv) = L(w) + L(v), Llvw') = £(v) + L(w') and v’ = wo.

For n > 1, write

W x v = wH My, v (w

Similar to (a), the sequences (vy,)n>1 and (v],),>1 stabilize. Observe that by asso-
ciativity of the Demazure product, we get

- - - / - /
W™ v = W xw v = w s (W) = WP (vw') = W v W
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Repeating this argument, we get

Now
v _ *,mn—1 -1 *,m _ Nxn—1 -1 1\ %1
n—1WnUpn =|w %0 wh v = v (w) v (w')
_[(w/)*,n—l]_l(vl)—l v (w/)*,n
- n—1Yn .

: / /
For sufficiently large n, we get w, = we, Vp—1 = vp, v,,_; = v,, and

(@)= sty =t
We conclude
vy v, = Wl
This finishes the proof. O

This proposition allows to associate to every o-conjugacy class O < W a corresponding
straight o-conjugacy class.

FExercise 175. Assume that S is finite. Show that
sup{l(w) — l(we) | we W} < +o0.

Conclude that there are infinitely many straight conjugacy classes if W is infinite and
irreducible. Show that there is only one straight conjugacy class if W is finite.

Ezercise 176. For W = S3 and A = Z[qi, q2], write the image of Ty, in H/[H,H] as
A-linear combination of Tp’s.

Suggestions for presentation topics

Those who formally enrolled for the course are required to give a short presentation of
20-30 minutes on a subject related to Coxeter groups. Longer talks are possible, but
please inform me beforehand and keep it under 60 minutes.

Please try to give a motivating and instructive talk, focussing on results and appli-
cations rather than elaborate technical proofs. You can find a couple of suggestions for
topics below, or you use your own topic after confirming it is suitable for this course.
Please email me once you made a decision. Topics are first come, first serve.

The type D,

The remaining infinite family of finite Coxeter groups is the type D,, for n > 4. Explain
how these groups look like, how to do computations like length, descent sets and Bruhat
order. You may follow [BB05, Section 8.2], or you construct the root system of type
D,, (using any standard Lie theory reference) and define it using the usual Weyl group
construction.
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Order automorphisms

A right weak order automorphism is a bijective map f : W — W such that v < w if
and only if f(v) <g f(w). A Cozxeter group automorphism is a group automorphism
f: W — W with f(S) = S. Show that, in most of the interesting cases, these two
notions agree following [BB05, Theorem 3.2.5]. Explain the situation for Bruhat order
automorphisms, using [BB05, Theorem 2.3.5].

Finite reflection groups

A finite subgroup G' < GL,(R) generated by reflections is called a finite reflection group.
It is a classical result that these are “the same as” finite Coxeter groups. Explain what
this means, e.g. following [Hum90]. You may either sketch what goes into the proof of
such a correspondence, or how to use a classification of finite Coxeter groups to obtain
a classification of regular polyhedrons (e.g. Platonic solids).

Braid groups and Jones polynomial

In a seminal paper, Jones [Jon87] introduced the so-called Jones polynomial to knot
theory, the study of smooth embeddings of the circle into R3. Following his paper,
explain what Braid groups are, how they relate to Coxeter groups of type A, and how
they relate to knot theory. Explain how to compute the Jones polynomial of a knot
and, as time permits, how Jones derives his polynomial from the representation theory
of Iwahori-Hecke algebras.

Flag varieties

Let V = C". A complete flag in V is a chain of sub-vector spaces
{(ctic---cU,1 &V,

so that dim U; = i. Let G = GL,,(C) and B < G the subset of upper triangular matrices.
Explain the one-to-one correspondence between complete flags in V' and the flag variety
G/B, e.g. following [Bri04].

Explain why the flag variety is projective, i.e. embeds into some projective space PV (C)
as closed subset (e.g. by embedding G/B into a suitable product of Grassmannians, then
using projectivity of Grassmannians as a black box).

Define the Schubert cell BwB < G/B for w € S, and show why it is isomorphic (as
variety, or manifold) to C/(*). Explain some applications of flag varieties, or explain how
to show that the covering relations of Schubert cells are given by the Bruhat order.

Further topics

o Shellability of Bruhat order [BB05, Section 2.7].

o Normal forms of reduced words [BB05, Section 3.4]. (taken)
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o Introduction to Coxeter group computations with computer algebra (GAP, SAGE

etc.).

e Young tableaux and the symmetric group.

» Unipotent orbits and conjugacy classes. (taken)

o Coxeter matroids. (taken)

o Categorification of Kazhdan-Lusztig polynomials. (taken)

o Conjugacy classes in finite Weyl groups. (taken)
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