Exercise 1

1. Prove the following result:
(a) let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}$, and let $S:=\left\{x \in \mathbb{R}^{n}: A x=b\right\}$. (The set S is just the set of all solutions of the linear equation $A x=b$.) Then the set S is a convex subset of \mathbb{R}^{n}.
(b) In \mathbb{R}^{n} the set $H:=\left\{x \in \mathbb{R}^{n}: a_{1} x_{1}+\ldots+a_{n} x_{n}=c\right\}$ is a convex set. For any particular choice of constants a_{i} it is a hyperplane in \mathbb{R}^{n}.
2. Prove that if $C \subset \mathbb{R}^{n}$ is convex, then $c \ell(C)$, the closure of C, is also convex.
3. Prove thatThe intersection of any number of convex sets is convex.
