
Solution to Exercise 6

1. (a)

∂f(x) =



{0} if x ∈ (−1, 1)
[−1, 0] if x = −1
[0, 1] if x = 1
{−1} if x ∈ (−2,−1)
{1} if x ∈ (1, 2)
(−∞,−1] if x = −2
[1,+∞) if x = 2
∅ if x ∈ (−∞,−2) ∪ (2,+∞).

(b) For x ̸= 0, ∇∥x∥2 = x
∥x∥2

.

At x = 0, we know that u ∈ ∂∥x∥2 if

∥y∥2 ≥ ∥0∥2 + ⟨y − 0,u⟩ = ⟨y,u⟩ for all y ∈ RN . (1)

We can find u that meet these conditions using the Cauchy-Schwarz inequality.
Note that

⟨y,u⟩ ≤ ∥y∥2∥u∥2
so (1) will hold when ∥u∥2 ≤ 1. On the other hand, if ∥u∥2 > 1, then for y = u,
we have

⟨y,u⟩ = ∥y∥22 > ∥y∥2,

and (1) does not hold. Therefore

∂∥x∥2 =

{
{u : ∥u∥2 ≤ 1} , x = 0
x, x ̸= 0

2. By the subgradient inequality, we have

f(x) ≥ f(x̂) + sT (x− x̂) for all x ∈ dom f

Suppose that the subdifferential ∂f(x̂) is unbounded. Let sk be a sequence of
subgradients in ∂f(x̂) with ∥sk∥ → ∞.

Since x̂ lies in the interior of domain, there exists a δ > 0 such that x̂+ δy ∈
dom f for any y ∈ Rn. Letting x = x̂+ δ sk

∥sk∥ for any k, we have

f

(
x̂+ δ

sk
∥sk∥

)
≥ f(x̂) + δ ∥sk∥ for all k
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As k → ∞, we have f
(
x̂+ δ sk

∥sk∥

)
− f(x̂) → ∞. However, this relation contra-

dicts the continuity of f at x̂.

3. (a) The first part of the proof is elementary: ∀g1 ∈ ∂f1(x),∀g2 ∈ ∂f2(x), we
have

fi(y) ≥ fi(x) + ⟨gi, y − x⟩ , i = 1, 2,∀x, y ∈ RN .

Hence,
f(y) ≥ f(x) + ⟨g2 + g1, y − x⟩ ,

Therefore g1 + g2 ∈ ∂f(x).
The second part of the proof is kind of difficult and is optional, please refer to

Moreau-Rockafellar Theorem if you are interested. (See, for example, Theorem
2.9 in On subdifferential calculus.)

(b) For any ATg ∈ AT∂f(Ax+ b). Then,

f(Ay + b) ≥ f(Ax+ b) + ⟨Ay −Ax, g⟩

for all y ∈ RN . Hence, AT∂f(Ax+ b) ⊂ ∂h(x).
On the other hand, for any g′ ∈ ∂h(x). Then,

h(y) ≥ h(x) + ⟨y − x, g′⟩ ,

for any y ∈ RN .
Note that for any ATg ∈ AT∂f(Ax+ b),

h(y) ≥ h(x) +
〈
y − x,ATg

〉
.

Then g′ ∈ AT∂f(Ax+ b) and ∂h(x) = AT∂f(Ax+ b).
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