Solution to Exercise 6

1. (a)

$$
\partial f(x)= \begin{cases}\{0\} & \text { if } x \in(-1,1) \\ {[-1,0]} & \text { if } x=-1 \\ {[0,1]} & \text { if } x=1 \\ \{-1\} & \text { if } x \in(-2,-1) \\ \{1\} & \text { if } x \in(1,2) \\ (-\infty,-1] & \text { if } x=-2 \\ {[1,+\infty)} & \text { if } x=2 \\ \emptyset & \text { if } x \in(-\infty,-2) \cup(2,+\infty) .\end{cases}
$$

(b) For $\boldsymbol{x} \neq \mathbf{0}, \nabla\|\boldsymbol{x}\|_{2}=\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_{2}}$.

At $\boldsymbol{x}=\mathbf{0}$, we know that $\boldsymbol{u} \in \partial\|\boldsymbol{x}\|_{2}$ if

$$
\begin{equation*}
\|\boldsymbol{y}\|_{2} \geq\|\mathbf{0}\|_{2}+\langle\boldsymbol{y}-\mathbf{0}, \boldsymbol{u}\rangle=\langle\boldsymbol{y}, \boldsymbol{u}\rangle \quad \text { for all } \boldsymbol{y} \in \mathbb{R}^{N} . \tag{1}
\end{equation*}
$$

We can find \boldsymbol{u} that meet these conditions using the Cauchy-Schwarz inequality. Note that

$$
\langle\boldsymbol{y}, \boldsymbol{u}\rangle \leq\|\boldsymbol{y}\|_{2}\|\boldsymbol{u}\|_{2}
$$

so (1) will hold when $\|\boldsymbol{u}\|_{2} \leq 1$. On the other hand, if $\|\boldsymbol{u}\|_{2}>1$, then for $\boldsymbol{y}=\boldsymbol{u}$, we have

$$
\langle\boldsymbol{y}, \boldsymbol{u}\rangle=\|\boldsymbol{y}\|_{2}^{2}>\|\boldsymbol{y}\|_{2},
$$

and (1) does not hold. Therefore

$$
\partial\|\boldsymbol{x}\|_{2}= \begin{cases}\left\{\boldsymbol{u}:\|\boldsymbol{u}\|_{2} \leq 1\right\}, & \boldsymbol{x}=\mathbf{0} \\ \boldsymbol{x}, & \boldsymbol{x} \neq \mathbf{0}\end{cases}
$$

2. By the subgradient inequality, we have

$$
f(x) \geq f(\widehat{x})+s^{T}(x-\widehat{x}) \quad \text { for all } x \in \operatorname{dom} f
$$

Suppose that the subdifferential $\partial f(\widehat{x})$ is unbounded. Let s_{k} be a sequence of subgradients in $\partial f(\widehat{x})$ with $\left\|s_{k}\right\| \rightarrow \infty$.

Since \hat{x} lies in the interior of domain, there exists a $\delta>0$ such that $\hat{x}+\delta y \in$ $\operatorname{dom} f$ for any $y \in \mathbb{R}^{n}$. Letting $x=\widehat{x}+\delta \frac{s_{k}}{\left\|s_{k}\right\|}$ for any k, we have

$$
f\left(\widehat{x}+\delta \frac{s_{k}}{\left\|s_{k}\right\|}\right) \geq f(\widehat{x})+\delta\left\|s_{k}\right\| \quad \text { for all } k
$$

As $k \rightarrow \infty$, we have $f\left(\widehat{x}+\delta \frac{s_{k}}{\left\|s_{k}\right\|}\right)-f(\widehat{x}) \rightarrow \infty$. However, this relation contradicts the continuity of f at \widehat{x}.
3. (a) The first part of the proof is elementary: $\forall g_{1} \in \partial f_{1}(x), \forall g_{2} \in \partial f_{2}(x)$, we have

$$
f_{i}(y) \geq f_{i}(x)+\left\langle g_{i}, y-x\right\rangle, i=1,2, \forall x, y \in \mathbb{R}^{N}
$$

Hence,

$$
f_{(y)} \geq f(x)+\left\langle g_{2}+g_{1}, y-x\right\rangle
$$

Therefore $g_{1}+g_{2} \in \partial f(x)$.
The second part of the proof is kind of difficult and is optional, please refer to Moreau-Rockafellar Theorem if you are interested. (See, for example, Theorem 2.9 in On subdifferential calculus.)
(b) For any $\boldsymbol{A}^{T} \boldsymbol{g} \in \boldsymbol{A}^{T} \partial f(\boldsymbol{A x}+\boldsymbol{b})$. Then,

$$
f(\boldsymbol{A} \boldsymbol{y}+\boldsymbol{b}) \geq f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})+\langle\boldsymbol{A} \boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}, \boldsymbol{g}\rangle
$$

for all $\boldsymbol{y} \in \mathbb{R}^{N}$. Hence, $\boldsymbol{A}^{T} \partial f(\boldsymbol{A x}+\boldsymbol{b}) \subset \partial h(\boldsymbol{x})$.
On the other hand, for any $\boldsymbol{g}^{\prime} \in \partial h(\boldsymbol{x})$. Then,

$$
h(\boldsymbol{y}) \geq h(\boldsymbol{x})+\left\langle\boldsymbol{y}-\boldsymbol{x}, \boldsymbol{g}^{\prime}\right\rangle,
$$

for any $\boldsymbol{y} \in \mathbb{R}^{N}$.
Note that for any $\boldsymbol{A}^{T} \boldsymbol{g} \in \boldsymbol{A}^{T} \partial f(\boldsymbol{A x}+\boldsymbol{b})$,

$$
h(\boldsymbol{y}) \geq h(\boldsymbol{x})+\left\langle\boldsymbol{y}-\boldsymbol{x}, \boldsymbol{A}^{T} \boldsymbol{g}\right\rangle
$$

Then $g^{\prime} \in \boldsymbol{A}^{T} \partial f(\boldsymbol{A x}+\boldsymbol{b})$ and $\partial h(\boldsymbol{x})=\boldsymbol{A}^{T} \partial f(\boldsymbol{A x}+\boldsymbol{b})$.

