Solution to Exercise 5

1. (a) Assume that f is convex. Let (x, u) and (y, v) be two points of the epigraph: $u \geq f(x)$ and $v \geq f(y)$. In particular, $(x, y) \in \operatorname{dom}(f)^{2}$. Let $\left.t \in\right] 0,1[$. Then $f(t x+(1-t) y) \leq t u+(1-t) v$. Thus, $t(x, u)+(1-t)(y, v) \in \operatorname{epi}(f)$, which proves that epi (f) is convex.

Conversely, assume that epi (f) is convex. Let $(x, y) \in \operatorname{dom}(f)^{2}$. For (x, u) and (y, v) two points in $\operatorname{epi}(f)$, and $t \in[0,1]$, the point $t(x, u)+(1-t)(y, v)$ belongs to epi (f). So, $f(t(x+(1-t) y) \leq t u+(1-t) v$.

- If $f(x)$ et $f(y)$ are $>-\infty$, we can choose $u=f(x)$ and $v=f(y)$, which gives the convexity of f.
- If $f(x)=-\infty$, we can choose u arbitrary close to $-\infty$. Letting u go to $-\infty$, we obtain $f(t(x+(1-t) y)=-\infty$, which again gives the convexity of f.
(b) We only need to prove epi $\left(\sup _{i \in I} f_{i}\right)=\bigcap_{i \in I}$ epi $\left(f_{i}\right)$. Then the result follows directly from (a) and the fact that the intersection of any number of convex sets is convex.

In fact, for any $(x, t) \in \operatorname{epi}\left(\sup _{i \in I} f_{i}\right), \sup _{i \in I} f_{i}(x) \leq t$. Hence, $f_{i}(x) \leq$ $\sup _{i \in I} f_{i}(x) \leq t, \forall i \in I$. Then $(x, t) \in \operatorname{epi}\left(f_{i}\right), \forall i \in I$, i.e., $(x, t) \in \bigcap_{i \in I} \operatorname{epi}\left(f_{i}\right)$. On the other hand, for any $(x, t) \in \bigcap_{i \in I}$ epi $\left(f_{i}\right), t \geq f_{i}(x), \forall i \in I$. This implies $t \geq \sup _{i \in I} f_{i}(x)$ and (hence) $(x, t) \in \operatorname{epi}\left(\sup _{i \in I} f_{i}\right)$.
2. (a) For all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{N}$ and $\lambda \in[0,1]$, we have

$$
\begin{aligned}
g(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) & =f(\lambda(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})+(1-\lambda)(\boldsymbol{A} \boldsymbol{y}+\boldsymbol{b})) \\
& \leq \lambda f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})+(1-\lambda) f(\boldsymbol{A} \boldsymbol{y}+\boldsymbol{b}) \\
& =\lambda g(\boldsymbol{x})+(1-\lambda) g(\boldsymbol{y})
\end{aligned}
$$

(b) From the convexity of $g, g(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \lambda g(\boldsymbol{x})+(1-\lambda) \boldsymbol{y}$. Since h is non-decreasing, we have

$$
h(g(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})) \leq h(\lambda g(\boldsymbol{x})+(1-\lambda) \boldsymbol{y})
$$

Hence

$$
\begin{aligned}
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) & =h(g(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})) \\
& \leq h(\lambda g(\boldsymbol{x})+(1-\lambda) g(\boldsymbol{y})) \\
& \leq \lambda h(g(\boldsymbol{x}))+(1-\lambda) h(g(\boldsymbol{y})) \\
& =\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})
\end{aligned}
$$

3. (a) is false. Consider $f(x)=x^{4}$, which is strictly convex on \mathbb{R} but $f^{\prime \prime}(0)=0$.
(b), (c) and (d) are true.
