Solution to Exercise 5

1. (a) Assume that f is convex. Let (x, u) and (y, v) be two points of the epigraph: $u \ge f(x)$ and $v \ge f(y)$. In particular, $(x, y) \in \text{dom}(f)^2$. Let $t \in]0, 1[$. Then $f(tx + (1 - t)y) \le tu + (1 - t)v$. Thus, $t(x, u) + (1 - t)(y, v) \in \text{epi}(f)$, which proves that epi(f) is convex.

Conversely, assume that epi(f) is convex. Let $(x, y) \in dom(f)^2$. For (x, u) and (y, v) two points in epi(f), and $t \in [0, 1]$, the point t(x, u) + (1 - t)(y, v) belongs to epi(f). So, $f(t(x + (1 - t)y) \le tu + (1 - t)v$.

- If f(x) et f(y) are $> -\infty$, we can choose u = f(x) and v = f(y), which gives the convexity of f.

- If $f(x) = -\infty$, we can choose u arbitrary close to $-\infty$. Letting u go to $-\infty$, we obtain $f(t(x + (1 - t)y) = -\infty)$, which again gives the convexity of f.

(b) We only need to prove $\operatorname{epi}(\sup_{i \in I} f_i) = \bigcap_{i \in I} \operatorname{epi}(f_i)$. Then the result follows directly from (a) and the fact that the intersection of any number of convex sets is convex.

In fact, for any $(x,t) \in \operatorname{epi}(\sup_{i \in I} f_i)$, $\sup_{i \in I} f_i(x) \leq t$. Hence, $f_i(x) \leq \sup_{i \in I} f_i(x) \leq t$, $\forall i \in I$. Then $(x,t) \in \operatorname{epi}(f_i)$, $\forall i \in I$, i.e., $(x,t) \in \bigcap_{i \in I} \operatorname{epi}(f_i)$. On the other hand, for any $(x,t) \in \bigcap_{i \in I} \operatorname{epi}(f_i)$, $t \geq f_i(x)$, $\forall i \in I$. This implies $t \geq \sup_{i \in I} f_i(x)$ and (hence) $(x,t) \in \operatorname{epi}(\sup_{i \in I} f_i)$.

2. (a) For all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N$ and $\lambda \in [0, 1]$, we have

$$g(\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}) = f(\lambda(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}) + (1 - \lambda)(\boldsymbol{A}\boldsymbol{y} + \boldsymbol{b}))$$

$$\leq \lambda f(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}) + (1 - \lambda)f(\boldsymbol{A}\boldsymbol{y} + \boldsymbol{b})$$

$$= \lambda g(\boldsymbol{x}) + (1 - \lambda)g(\boldsymbol{y})$$

(b) From the convexity of g, $g(\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}) \leq \lambda g(\boldsymbol{x}) + (1 - \lambda)\boldsymbol{y}$. Since h is non-decreasing, we have

$$h(g(\lambda \boldsymbol{x} + (1-\lambda)\boldsymbol{y})) \le h(\lambda g(\boldsymbol{x}) + (1-\lambda)\boldsymbol{y}).$$

Hence

$$\begin{split} f(\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}) &= h(g(\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y})) \\ &\leq h(\lambda g(\boldsymbol{x}) + (1 - \lambda)g(\boldsymbol{y})) \\ &\leq \lambda h(g(\boldsymbol{x})) + (1 - \lambda)h(g(\boldsymbol{y})) \\ &= \lambda f(\boldsymbol{x}) + (1 - \lambda)f(\boldsymbol{y}) \end{split}$$

3. (a) is false. Consider $f(x) = x^4$, which is strictly convex on \mathbb{R} but f''(0) = 0. (b), (c) and (d) are true.