Solution to Exercise 4

1. (a) When $\alpha=1$, we can directly verify the convexity of $|x|$ by definition. When $\alpha>1, f(x)=x^{\alpha}$ is twice-differentiable and $f^{\prime \prime}(x)=\alpha(\alpha-1) x^{\alpha-2} \geq 0$. Then the result follows from second-order condition.
(b) Let $f=\max \left(f_{1}, f_{2}\right)$. Since $\forall x, y \in \mathbb{R}^{N}, \lambda \in[0,1]$, we have

$$
f_{i}(\lambda x+(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y) \leq \lambda f(x)+(1-\lambda) f(y), i=1,2
$$

Therefore,
$f(\lambda x+(1-\lambda) y)=\max \left(f_{1}(\lambda x+(1-\lambda) y), f_{2}(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)\right.$.
2. The fact that strict convexity implies convexity is obvious. To see that strong convexity implies strict convexity, note that strong convexity of f implies
$f(\lambda x+(1-\lambda) y)-\mu\|\lambda x+(1-\lambda) y\|^{2} \leq \lambda f(x)+(1-\lambda) f(y)-\lambda \mu\|x\|^{2}-(1-\lambda) \mu\|y\|^{2}$.
But

$$
\lambda \mu\|x\|^{2}+(1-\lambda) \mu\|y\|^{2}-\mu\|\lambda x+(1-\lambda) y\|^{2}>0, \forall x, y, x \neq y, \forall \lambda \in(0,1)
$$

because $\|x\|^{2}$ is strictly convex. The claim follows.
To see that the converse statements are not true, observe that $f(x)=x$ is convex but not strictly convex and $f(x)=x^{4}$ is strictly convex but not strongly convex.
3. (a) We have

$$
\nabla^{2} f=\left(\begin{array}{cc}
\frac{2}{x_{2}} & \frac{-2 x_{1}}{x_{2}^{2}} \\
\frac{-2 x_{1}}{x_{2}^{2}} & \frac{2 x_{1}^{2}}{x^{3}}
\end{array}\right)=\frac{2}{x_{2}^{3}}\left(\begin{array}{cc}
x_{2}^{2} & -x_{1} x_{2} \\
-x_{1} x_{2} & x_{1}^{2}
\end{array}\right) .
$$

Since $\nabla^{2} f \succeq 0, \forall\left(x_{1}, x_{2}\right) \in \mathbb{R} \times(0, \infty), f\left(x_{1}, x_{2}\right)$ isconvexon $\mathbb{R} \times(0, \infty)$.
(b) Just note that the Hessian of f is

$$
\nabla^{2} f=\left(\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{i} \partial x_{j}}\right)_{1 \leq i, j \leq N}=P
$$

and use second-order condition.

