Solution to Exercise 3

1. (a) $\operatorname{int}(I^2) = \emptyset$, $\operatorname{ri}(I^2) = \{(x, y, 0) \mid 0 < x, y < 1\}$, $\operatorname{int}(I^3) = \operatorname{ri}(I^3) = \{(x, y, z) \mid 0 < x, y, z < 1\}$ (b) follows directly from (a).

-		
61	٠	
- 1	,	
_		

Suppose the condition holds for x. Let $\bar{x} \in \operatorname{ri}(C)$. If $x = \bar{x}$, then we are done. So assume $x \neq \bar{x}$. Then there exists $\gamma > 0$ such that $y = x + \gamma(x - \bar{x}) \in C$. Hence $x = \frac{1}{1+\gamma}y + \frac{\gamma}{1+\gamma}\bar{x}$. Since $\bar{x} \in \operatorname{ri}(C)$, $y \in C$, by the line segment principle, we have $x \in \operatorname{ri}(C)$. The other direction is clear from the fact that $x \in \operatorname{ri}(C)$.

3. For any i = 1, ..., k, any $x, y \in \text{dom} f_i$, and $\lambda \in [0, 1]$, we have $f_i(\lambda x + (1 - \lambda)y) \leq \lambda f_i(x) + (1 - \lambda)f_i(y)$ Then it follows that

$$f(\lambda x + (1-\lambda)y) = \sum_{i=1}^{k} w_i f_i(\lambda x + (1-\lambda)y) \le \sum_{i=1}^{k} w_i \left(\lambda f_i(x) + (1-\lambda)f_i(y)\right) = \lambda f(x) + (1-\lambda)f(y)$$

Hence, f(x) is convex.