Solution to Exercise 3

1. (a) $\operatorname{int}\left(I^{2}\right)=\emptyset$, ri $\left(I^{2}\right)=\{(x, y, 0) \mid 0<x, y<1\}$, $\operatorname{int}\left(I^{3}\right)=\operatorname{ri}\left(I^{3}\right)=$ $\{(x, y, z) \mid 0<x, y, z<1\}$
(b) follows directly from (a).
2.

Suppose the condition holds for x. Let $\bar{x} \in \operatorname{ri}(C)$. If $x=\bar{x}$, then we are done. So assume $x \neq \bar{x}$. Then there exists $\gamma>0$ such that $y=x+\gamma(x-\bar{x}) \in C$. Hence $x=\frac{1}{1+\gamma} y+\frac{\gamma}{1+\gamma} \bar{x}$. Since $\bar{x} \in \operatorname{ri}(C), y \in C$, by the line segment principle, we have $x \in \operatorname{ri}(C)$. The other direction is clear from the fact that $x \in \operatorname{ri}(C)$.
3. For any $i=1, \ldots, k$, any $x, y \in \operatorname{dom} f_{i}$, and $\lambda \in[0,1]$, we have
$f_{i}(\lambda x+(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y)$
Then it follows that
$f(\lambda x+(1-\lambda) y)=\sum_{i=1}^{k} w_{i} f_{i}(\lambda x+(1-\lambda) y) \leq \sum_{i=1}^{k} w_{i}\left(\lambda f_{i}(x)+(1-\lambda) f_{i}(y)\right)=\lambda f(x)+(1-\lambda) f(y)$
Hence, $f(x)$ is convex.

