Exercise 6

1. Give the subdifferential sets of the following functions:
(a) $f: \mathbb{R} \rightarrow(-\infty,+\infty]$, defined by

$$
f(x):= \begin{cases}0 & \text { if } x \in[-1,+1] \\ |x|-1 & \text { if } x \in[-2,-1) \cup(1,2] \\ +\infty & \text { if } x \in(-\infty,-2) \cup(2,+\infty)\end{cases}
$$

$(\partial f(x)$ is \emptyset for all $x \notin \operatorname{dom}(f)$. Hint: you can draw the image of f and consider the geometric intuition of subgradient.)
(b) $f(x)=\|x\|_{2}$.
2. Prove that if $\widehat{x} \in \operatorname{int}(\operatorname{dom} f)$, then $\partial f(\widehat{x})$ is bounded. (Hint: recall that a convex function is continuous over the interior of its domain. And you can google for more information about subdifferential.)
3. Assume that all functions below are well-defined on all of \mathbb{R}^{N}. Prove the following properties of subdifferential:
(a)If $f(\boldsymbol{x})=f_{1}(\boldsymbol{x})+f_{2}(\boldsymbol{x})$, then

$$
\partial f(\boldsymbol{x})=\partial f_{1}(\boldsymbol{x})+\partial f_{2}(\boldsymbol{x}) .
$$

(b) If $h(\boldsymbol{x})=f(\boldsymbol{A x}+\boldsymbol{b})$, then

$$
\partial h(\boldsymbol{x})=\boldsymbol{A}^{\mathrm{T}} \partial f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})
$$

