Exercise 5

1. (a) Prove that a function $f: \mathcal{X} \rightarrow[-\infty,+\infty]$ is convex if and only if its epigraph epi (f) is a convex set.
(b) Prove that if $\left(f_{i}\right)_{i \in I}$ is a family of convex functions $\mathcal{X} \rightarrow[-\infty,+\infty]$, with I any set of indices, then $\sup _{i \in I} f_{i}$ is convex. (Hint: using (a) and the fact that the intersection of any convex sets is still convex, you can give a very simple proof.)
2. Prove that the following operations preserve convexity:
(a) Composition with an affine function: If $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex, then $g: \mathbb{R}^{D} \rightarrow \mathbb{R}$ defined by

$$
g(\boldsymbol{x})=f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})
$$

where $\boldsymbol{A} \in \mathbb{R}^{N \times D}$ and $b \in \mathbb{R}^{N}$, is convex.
(b) Composition with scalar functions: Consider the function $f(\boldsymbol{x})=h(g(\boldsymbol{x}))$, where $g: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$. f is convex if g is convex and h is convex and non-decreasing.
3. Assume $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable. Determine which of the following implications are true. You do NOT need to explain why the implication holds, but please give a counter example if one direction does not hold.
(a) $\nabla^{2} f(x) \succ 0, \forall x \in \Omega \Leftrightarrow f$ is strictly convex on Ω.
(b) A function f is strictly convex on $\Omega \subseteq \mathbb{R}^{n}$ if and only if

$$
f(y)>f(x)+\nabla f^{T}(x)(y-x), \forall x, y \in \Omega, x \neq y
$$

(c) f is strongly convex if and only if there exists $m>0$ such that

$$
f(y) \geq f(x)+\nabla^{T} f(x)(y-x)+m\|y-x\|^{2}, \forall x, y \in \operatorname{dom}(f)
$$

(d) f is strongly convex if and only if there exists $m>0$ such that

$$
\nabla^{2} f(x) \succeq m I, \forall x \in \operatorname{dom}(f)
$$

