Exercise 4

1. (a) Prove that $|x|^{\alpha}$ is convex on \mathbb{R} for $\alpha \geq 1$. (b) Prove that if $f_1, f_2 : \mathbb{R}^N \to \mathbb{R}$ are convex, then $\max(f_1, f_2)$ is convex.

2. Prove the following implication: strong convexity \Rightarrow strict convexity \Rightarrow convexity. Is the converse of either implication is true? Why?

3. (a) Prove that the Quadratic-Over-Linear function $f(x_1, x_2) = \frac{x_1^2}{x_2}$ is convex on $\mathbb{R} \times (0, \infty)$.

(b) Prove that the quadratic function

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\mathrm{T}}\boldsymbol{P}\boldsymbol{x} + \boldsymbol{q}^{\mathrm{T}}\boldsymbol{x} + r,$$

where P is symmetric, is convex if and only if P is positive semi-definite.