Exercise 4

1. (a) Prove that $|x|^{\alpha}$ is convex on \mathbb{R} for $\alpha \geq 1$.
(b) Prove that if $f_{1}, f_{2}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are convex, then $\max \left(f_{1}, f_{2}\right)$ is convex.
2. Prove the following implication: strong convexity \Rightarrow strict convexity \Rightarrow convexity. Is the converse of either implication is true? Why?
3. (a) Prove that the Quadratic-Over-Linear function $f\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}}{x_{2}}$ is convex on $\mathbb{R} \times(0, \infty)$.
(b) Prove that the quadratic function

$$
f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{x}+\boldsymbol{q}^{\mathrm{T}} \boldsymbol{x}+r,
$$

where \boldsymbol{P} is symmetric, is convex if and only if \boldsymbol{P} is positive semi-definite.

