Exercise 3

1. (a) Give the interior and relative interior of the following sets:
(i) $I^{2}:=\{(x, y, 0) \mid 0 \leq x, y \leq 1\}$; (ii) $I^{3}:=\{(x, y, z) \mid 0 \leq x, y, z \leq 1\}$.
(b) It is true that if $T \subset S$, then $\operatorname{int}(T) \subset \operatorname{int}(S)$. Does this result hold for relative interior? Explain why.
2. Prove the Prolong Lemma:

Let C be a nonempty convex set. Then we have

$$
x \in \operatorname{ri}(C) \Longleftrightarrow \forall \bar{x} \in C, \exists \gamma>0 \text { such that } x+\gamma(x-\bar{x}) \in C .
$$

In other words, x is a relative interior point iff every line segment in C having x as one of the endpoints can be prolonged beyond x without leaving C. (Hint: Use Line Segment Property of relative interior. You can also Google for more details and applications about this lemma.)
3. Let $f_{1}, f_{2}, \ldots, f_{k}$ be convex functions and $w_{1}, w_{2}, \ldots, w_{k}$ be nonnegative real numbers. Prove that $f(x)=\sum_{i=1}^{k} w_{i} f_{i}(x)$ is a convex function.

