THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH4060 Complex Analysis 2022-23
 Tutorial 9
 30th March 2022

1. (Ex. 15 Ch .8 in textbook) Here are two properties enjoyed by automorphisms of the upper half plane.
(a) Suppose Φ is an automorphism of \mathbb{H} that fixes three distinct points on the real axis. Then Φ is the identity.
(b) Suppose $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ are two pairs of three distinct points on the real axis with

$$
x_{1}<x_{2}<x_{3} \text { and } y_{1}<y_{2}<y_{3}
$$

Prove that there exists (a unique) automorphism Φ of \mathbb{H} so that $\Phi\left(x_{j}\right)=y_{j}, j=$ $1,2,3$. The same conclusion holds if $y_{3}<y_{1}<y_{2}$ or $y_{2}<y_{3}<y_{1}$.

Solution. (a) The fixed points of the automorphism is given by the equation:

$$
z=\frac{a z+b}{c z+d} \Rightarrow c z^{2}+(d-a) z-b=0
$$

The only possible case for this equation having 3 distinct solution is $c=d-a=$ $b=0$. Thus the automorphism must be identity.
(b) For uniqueness, if we have two function φ_{1} and φ_{2} satisfying the condition, we have $\varphi_{1} \circ \varphi_{2}^{-1}$ fixes y_{1}, y_{2}, y_{3}. Thus by part (a), $\varphi_{1} \circ \varphi_{2}^{-1}=I d \Rightarrow \varphi_{1}=\varphi_{2}$.
For the existence, Consider the function defined by the equation:

$$
\frac{\left(z-x_{2}\right)\left(x_{1}-x_{3}\right)}{\left(z-x_{3}\right)\left(x_{1}-x_{2}\right)}=\frac{\left(\Phi(z)-y_{2}\right)\left(y_{1}-y_{3}\right)}{\left(\Phi(z)-y_{3}\right)\left(y_{1}-y_{2}\right)}
$$

It is also a linear fractional transformation:

$$
\Phi(z)=\frac{\left(y_{3}-y_{2} t\right) z-y_{3} x_{2}+x_{3} y_{2} t}{(1-t) z-x_{2}+x_{3} t} \text { where } t=\frac{\left(y_{1}-y_{3}\right)\left(x_{1}-x_{2}\right)}{\left(y_{1}-y_{2}\right)\left(x_{1}-x_{3}\right)}
$$

Easy to check the function maps $\left(x_{1}, x_{2}, x_{3}\right)$ to $\left(y_{1}, y_{2}, y_{3}\right)$.
2. (Ex. 16 Ch. 8 in textbook) Let

$$
f(z)=\frac{i-z}{i+z} \text { and } f^{-1}(w)=i \frac{1-w}{1+w}
$$

(a) Given $\theta \in \mathbb{R}$, find real numbers a, b, c, d so that $a d-b c=1$, and so that for any $z \in \mathbb{H}$,

$$
\frac{a z+b}{c z+d}=f^{-1}\left(e^{i \theta} f(z)\right)
$$

(b) Given $\alpha \in \mathbb{D}$, find real numbers a, b, c, d such that $a d-b c=1$, and so that for any $z \in \mathbb{H}$,

$$
\frac{a z+b}{c z+d}=f^{-1}\left(\psi_{\alpha}(f(z))\right)
$$

(c) Prove that if g is an automorphism of the unit disc, then there exist real numbers a, b, c, d such that $a d-b c=1$ and so that for any $z \in \mathbb{H}$,

$$
\frac{a z+b}{c z+d}=f^{-1} \circ g \circ f(z)
$$

Solution. (a) Since $f, f^{-1}, e^{i \theta} z$ are all linear fractional transformation, we can use the matrix product formula:

$$
\begin{aligned}
& k\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-i & i \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & i \\
1 & i
\end{array}\right) \\
& =2 i e^{i \theta / 2}\left(\begin{array}{cc}
\cos \theta / 2 & \sin \theta / 2 \\
-\sin \theta / 2 & \cos \theta / 2
\end{array}\right) \\
& \text { so } a=d=\cos \theta / 2, b=-c=\sin \theta / 2 .
\end{aligned}
$$

(b) Since $f, f^{-1}, \frac{\alpha-z}{1-\bar{\alpha} z}$ are all linear fractional transformation, we can use the matrix product formula:

$$
\begin{aligned}
& k\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-i & i \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & \alpha \\
-\bar{\alpha} & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & i \\
1 & i
\end{array}\right) \\
& =2\left(\begin{array}{cc}
\operatorname{Im} \alpha & \operatorname{Re} \alpha-1 \\
\operatorname{Re} \alpha+1 & -\operatorname{Im} \alpha
\end{array}\right)
\end{aligned}
$$

the determinant is $1-|\alpha|^{2}$. Thus

$$
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)=\sqrt{\frac{1}{1-|\alpha|^{2}}}\left(\begin{array}{cc}
\operatorname{Im} \alpha & \operatorname{Re} \alpha-1 \\
\operatorname{Re} \alpha+1 & -\operatorname{Im} \alpha
\end{array}\right)
$$

(c) By product rule of linear fractional transformation, the result is just the product of the matrices in (a) and (b).
3. (Ex. 19 Ch .8 in textbook) Prove that the complex plane slit along the union of the rays $\cup_{k=1}^{n}\left\{A_{k}+i y: y \leq 0\right\}$ is simply connected.

Solution. Recall that the definition of simply connected region Ω is for any two curves: γ_{1} and γ_{2} inside the region starting at the same point and ending at the same point, then γ_{1} is homotopic to γ_{2}. (i.e exist a continuous map $F(s, t)$ from $[0,1] \times[0,1]$ to Ω s.t $F(0, t)=\gamma_{1}(t)$, $F(1, t)=\gamma_{2}(t), F(s, 0)=\gamma_{1}(0)=\gamma_{2}(0)$ and $\left.F(s, 1)=\gamma_{1}(1)=\gamma_{2}(1)\right)$.
Now If we have two curves $\gamma_{1}(t)$ and $\gamma_{2}(t)$ as above in $\Omega=\mathbb{C} \backslash \cup_{k=1}^{n}\left\{A_{k}+i y: y \leq\right.$ $0\}$. Let $M=\max \left(\max \left|I m \gamma_{1}(t)\right|, \max \left|I m \gamma_{2}(t)\right|\right)$. Then let $\tilde{\gamma}_{1}(t):=\gamma_{1}(t)+i M$ and $\tilde{\gamma}_{2}(t):=\gamma_{1}(t)+i M$. Then $\tilde{\gamma}_{1}(t)$ and $\tilde{\gamma}_{2}(t)$ are completely contained in \mathbb{H}. Thus there
exists a homotopy $\phi(s, t)$ from $\tilde{\gamma}_{1}(t)$ to $\tilde{\gamma}_{2}(t)$, Then $\phi(s, t)$ can be directly extended to a homotopy between $\gamma_{1}(t)$ and $\gamma_{2}(t)$.
It seems the homotopy functions that I have written in tutorial is not completely correct. If you are interested in it, you can try to give the explicit function by yourself :D.
4. (Additional Exercise)Prove the Caratheodory inequality: Let $f: D(0: R) \rightarrow \mathbb{C}$ is a holomorphic function, Suppose $r<R$, then we have:

$$
\|f\|_{r} \leq \frac{2 r}{R-r} \sup _{|z| \leq R} R e f(z)+\frac{R+r}{R-r}|f(0)|
$$

where

$$
\|f\|_{r}=\max _{|z| \leq r}|f(z)|=\max _{|z|=r}|f(z)|
$$

Solution. See wiki: https://en.wikipedia.org/wiki/Borel-Caratheodory_theorem

