THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH4060 Complex Analysis 2022-23
 Tutorial 12
 20th April 2022

1. (Ex. 6 Ch. 9 in textbook) Prove that $\wp^{\prime \prime}$ is a quadratic polynomial in \wp.

Solution. Recall we have the formula:

$$
\left(\wp^{\prime}\right)^{2}=4\left(\wp-e_{1}\right)\left(\wp-e_{2}\right)\left(\wp-e_{3}\right)
$$

where $e_{1}=\wp\left(\frac{1}{2}\right), e_{2}=\wp\left(\frac{\tau}{2}\right), e_{3}=\wp\left(\frac{1+\tau}{2}\right)$ are constants. Then we differentiate it on both sides,

$$
2 \wp^{\prime} \wp^{\prime \prime}=4 \wp^{\prime}\left(3 \wp^{2}-2\left(e_{1}+e_{2}+e_{3}\right) \wp+e_{1} e_{2}+e_{2} e_{3}+e_{1} e_{3}\right)
$$

Thus $\wp^{\prime \prime}=6 \wp^{2}-4\left(e_{1}+e_{2}+e_{3}\right) \wp+2 e_{1} e_{2}+2 e_{2} e_{3}+2 e_{1} e_{3}$ is a quadratic polynomial in \wp.
2. (Ex. 7 Ch. 9 in textbook) Setting $\tau=1 / 2$ in the expression

$$
\sum_{m=-\infty}^{\infty} \frac{1}{(m+\tau)^{2}}=\frac{\pi^{2}}{\sin ^{2}(\pi \tau)}
$$

deduce that

$$
\sum_{m \geq 1, m \text { odd }} \frac{1}{m^{2}}=\frac{\pi^{2}}{8} \quad \text { and } \quad \sum_{m \geq 1} \frac{1}{m^{2}}=\frac{\pi^{2}}{6}=\zeta(2) .
$$

Similarly, using $\sum 1 /(m+\tau)^{4}$ deduce that

$$
\sum_{m \geq 1, m \text { odd }} \frac{1}{m^{4}}=\frac{\pi^{4}}{96} \quad \text { and } \quad \sum_{m \geq 1} \frac{1}{m^{4}}=\frac{\pi^{4}}{90}=\zeta(4)
$$

These results were already obtained using Fourier series in the exercises at the end of Chapters 2 and 3 in Book I.

Solution. We have

$$
\begin{aligned}
& \sum_{m=-\infty}^{\infty} \frac{1}{\left(m+\frac{1}{2}\right)^{2}}=\frac{\pi^{2}}{\sin ^{2}\left(\frac{\pi}{2}\right)} \\
\Longrightarrow & \sum_{m=-\infty}^{\infty} \frac{4}{(2 m+1)^{2}}=\pi^{2} \\
\Longrightarrow & \sum_{m=0}^{\infty} \frac{8}{(2 m+1)^{2}}=\pi^{2} \\
\Longrightarrow & \sum_{m \geq 1, m \text { odd }}^{\infty} \frac{1}{m^{2}}=\frac{\pi^{2}}{8}
\end{aligned}
$$

For $\sum_{m \geq 1} \frac{1}{m^{2}}$, because everything is absolutely convergent, we can arbitrarily exchange terms:

$$
\begin{aligned}
\sum_{m \geq 1}^{\infty} \frac{1}{m^{2}} & =\sum_{m \geq 1, m \text { odd }}^{\infty} \frac{1}{m^{2}}+\sum_{m \geq 2, m \text { even }}^{\infty} \frac{1}{m^{2}} \\
& =\sum_{m \geq 1, m \text { odd }}^{\infty} \frac{1}{m^{2}}+\sum_{m \geq 1}^{\infty} \frac{1}{4 m^{2}} \\
\Longrightarrow \sum_{m \geq 1}^{\infty} \frac{1}{m^{2}} & =\frac{4}{3} \sum_{m \geq 1, m \text { odd }}^{\infty} \frac{1}{m^{2}}=\frac{\pi^{2}}{6}
\end{aligned}
$$

similarly for $\sum_{m=-\infty}^{\infty} \frac{1}{(m+\tau)^{4}}$, by differentiate

$$
\sum_{m=-\infty}^{\infty} \frac{1}{(m+\tau)^{2}}=\frac{\pi^{2}}{\sin ^{2}(\pi \tau)}
$$

twice and replace τ by $\frac{1}{2}$, we have

$$
\sum_{m=-\infty}^{\infty} \frac{1}{\left(m+\frac{1}{2}\right)^{4}}=\frac{\pi^{4}}{3}
$$

Then

$$
\sum_{m \geq 1, m \text { odd }}^{\infty} \frac{1}{m^{4}}=\frac{\pi^{4}}{96} \quad \text { and } \quad \sum_{m \geq 1}^{\infty} \frac{1}{m^{2}}=\frac{\pi^{4}}{90}
$$

3. (Ex. 8 Ch. 9 in textbook) Let

$$
E_{4}(\tau)=\sum_{(n, m) \neq(0,0)} \frac{1}{(n+m \tau)^{4}}
$$

be the Eisenstein series of order 4 .
(a) Show that $E_{4}(\tau) \rightarrow \pi^{4} / 45$ as $\operatorname{Im}(\tau) \rightarrow \infty$.
(b) More precisely,

$$
\left|E_{4}(\tau)-\frac{\pi^{4}}{45}\right| \leq c e^{-2 \pi t} \quad \text { if } \tau=x+i t \text { and } t \geq 1
$$

(c) Deduce that

$$
\left|E_{4}(\tau)-\tau^{-4} \frac{\pi^{4}}{45}\right| \leq c t^{-4} e^{-2 \pi / t} \quad \text { if } \tau=i t \text { and } 0<t \leq 1
$$

Solution. (a) It is a consequence of (b).
(b) Recall Theorem 2.5 gives us the formula, for $k \geq 4$ even:

$$
E_{k}(\tau)=2 \zeta(k)+\frac{2(-1)^{k / 2}(2 \pi)^{k}}{(k-1)!} \sum_{r=1}^{\infty} \sigma_{k-1}(r) e^{2 \pi i r \tau}
$$

Where $\sigma_{l}(r)=\sum_{d \mid r} d^{l}$ From previous result, we know that $\zeta(4)=\frac{\pi^{2}}{90}$, Thus

$$
E_{4}(\tau)-2 \zeta(4)=E_{k}(\tau)-\frac{\pi^{2}}{45}=\frac{2(-1)^{2}(2 \pi)^{4}}{3!} \sum_{r=1}^{\infty} \sigma_{3}(r) e^{2 \pi i r \tau}
$$

We need to estimate the right hand side, in fact,

$$
\begin{array}{rlr}
\left|\frac{2(-1)^{2}(2 \pi)^{4}}{3!} \sum_{r=1}^{\infty} \sigma_{3}(r) e^{2 \pi i r \tau}\right| & \leq c_{1} \sum_{r=1}^{\infty}\left|\sigma_{3}(r) e^{2 \pi i r \tau}\right| \\
& \leq c_{1} \sum_{r=1}^{\infty} r^{4} e^{-2 \pi r t} \\
& =c_{1} e^{-2 \pi t} \sum_{r=1}^{\infty} r^{4} e^{-2 \pi t(r-1)} & \\
& \leq c e^{-2 \pi t} \quad \text { where } t=\operatorname{Im} \tau \\
\quad \text { because } e^{-2 \pi t(r-1)} \text { decay rapidly }
\end{array}
$$

(c) From theorem 2.1(iii), we have

$$
E_{k}(\tau)=\tau^{-k} E_{k}(-1 / \tau)
$$

Thus if $\tau=i t$ and $0<t \leq 1$, let $\theta=-1 / \tau$, then θ

$$
\left|E_{4}(\tau)-\tau^{-4} \frac{\pi^{4}}{45}\right|=\left|\theta^{4} E_{4}(\theta)-\theta^{4} \frac{\pi^{4}}{45}\right| \leq\left|\theta^{4}\right| c e^{-2 \pi / t}=c t^{-4} e^{-2 \pi / t}
$$

