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where J is the Jacobian matrix. On the other hand, the image of D under ψ′
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the area is still π.thus
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For the second integration,
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2. (Exercise 18 in textbook) Every thing is the same in the proof of theorem 4.2. But note
that if it is not piecewise smooth simple closed curves, the inverse conformal map will
not satisfy lemma 4.4. For example, in the case ”→ | ←”, the inverse will map the limit
point to two different points on the unit circle. Hence cannot use the same way to proof
lemma 4.4.

3. (Exercise 20 in textbook)

(a) By Schwarz-Christoffel formula, since β1+β2+β3 = 1/2+1/2+1/2 = 3/2 < 2. It
maps the upper half plane to a polygon with four angles 1/2, ..., 1/2, i.e a rectangle.

(b) By change of variable t = ζ2, the side length is
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We can use the formula for Beta function
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Similarly, for adjacent edge, by change of variable t = −ζ
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4. (Exercise 23 in textbook) We can write the integration as

F (z) =
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where ai are the n-th roots of unit. Then by change of variables (say, pull it back to H),
not difficult to see the integration maps ∂D to the polygon ∂P with the same n angles.
Then similar to what we have done in question 1 of tutorial 10 to show it is a conformal
mapping from D to P . Here we compute the length of the edges to show it is a regular
polygon. denote the length of the line segment in the image corresponding to the arc γk
from ak to ak+1 by lk.
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it is a regular n-gon. And the perimeter is given by
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