THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH4060 Complex Analysis 2022-23

 Homework 4 solutions

 Homework 4 solutions}

1. (Exercise 4 in textbook) Recall that $G(z)=i \frac{1-z}{1+z}$ mapping \mathbb{D} to \mathbb{H} conformally. Then the function $F(z)=(G(z)-i)^{2}$ is a holomorphic surjection from \mathbb{D} to \mathbb{C}. The reason why we need to "move it down" is that we need to ensure the holomorphicity near $G(1)=0$.
2. (Exercise 9 in textbook) In the interior of \mathbb{D}, u is a real part of a holomorphic function, this tells us u is harmonic. We only need to show $u(z)=0$ for $|z|=1$. In this case $2 \operatorname{Re}(u(z))=u(z)+\overline{u(z)}=\frac{i+z}{i-z}+\frac{\overline{i+z}}{i-z}=\frac{i+z}{i-z}+\frac{-i+\frac{1}{z}}{-i-\frac{1}{z}}=0$ since $|z|=1 \Rightarrow \bar{z}=\frac{1}{z}$.
3. (Exercise 12 in textbook)
(a) Suppose the fixed points of f is α and β then we consider the linear fractional transformation $\psi_{\alpha}(z)=\frac{\alpha-z}{1-\bar{\alpha} z}$, then $\psi_{\alpha} \circ f \circ \psi_{\alpha}^{-1}(z)$ maps 0 to 0 and maps $\psi_{\alpha}(\beta)$ to $\psi_{\alpha}(\beta)$. Then by Schwarz lemma, we have $\psi_{\alpha} \circ f \circ \psi_{\alpha}^{-1}(z)=z \Rightarrow f(z)=z$.
(b) In the upper half plane, $f(z)=z+a \forall a \in \mathbb{R}$ has no fixed point, then the corresponding automorphism of \mathbb{D} also has no fixed point.
Remark: If we consider the continuous extension to its boundary (including ∞ for \mathbb{H}), then there exists at least 1 fixed point since we have the Brouwer fixed-point theorem.
4. (Exercise 13 in textbook)
(a) We follow the hint, consider the function $\psi_{f(w)} \circ f \circ \psi_{w}^{-1}$ mapping 0 to 0 . Thus by Schwarz lemma, we have:

$$
\left|\psi_{f(w)} \circ f\right| \leq\left|\psi_{w}\right| \Rightarrow\left|\frac{f(z)-f(w)}{1-\overline{f(w)} f(z)}\right| \leq\left|\frac{z-w}{1-\bar{w} z}\right|
$$

(b) By part (a), we have

$$
\left|\frac{f(z)-f(w)}{z-w}\right| \cdot\left|\frac{1}{1-\overline{f(w)} f(z)}\right| \leq\left|\frac{1}{1-\bar{w} z}\right|
$$

Let $w \rightarrow z$, we get:

$$
\left|f^{\prime}(z)\right| \cdot\left|\frac{1}{1-|f(z)|^{2}}\right| \leq\left|\frac{1}{1-|z|^{2}}\right|
$$

