Then clearly,
$$L \ge B \ge \frac{1}{72}$$

$$\frac{P_{vop | .10}}{Hen \exists w_{o} \in \mathbb{C} \text{ s.t. } D(w_{o}, L) \subset f(D)}$$

$$\begin{split} & Pf: \text{ let } \lambda = \lambda \text{ lf} \text{).} \\ & \text{ Then } \forall n, \exists w_n \in \mathbb{C} \text{ s.t. } D(w_n, \lambda - \frac{1}{n}) \subset f(D) \subset f(\overline{D}) \\ & \text{ By compactness of } f(\overline{D}), \text{ we may assume } w_n \to w_o \in f(\overline{P}) \\ & (\text{by taking subseq } w_{n_k} \approx \text{ note that } \lambda - \frac{1}{n_k} \geq \lambda - \frac{1}{k}) \\ & \text{ If } w \in D(w_o, \lambda), \text{ then } |w - w_o| < \lambda \text{ and } \exists n_o \geq 1 \text{ s.t.} \\ & |W - w_o| < \lambda - \frac{1}{n_o}. \end{split}$$

Hence, using
$$W_n \Rightarrow W_0 \neq n_1 \ge n_0$$
 s.t.
 $|W_n - w_0| < (\lambda - \frac{1}{n_0}) - |W - w_0| \neq n \ge n_0$

$$\Rightarrow |W-W_n| \leq |W-W_0| + |W_n - W_0| < \lambda - \frac{1}{n_0} \leq \lambda - \frac{1}$$

Since WED(Wo,
$$\lambda$$
) is arbitrary, $D(W_{0}, \lambda) \subset f(\overline{D})$.
 $\Rightarrow D(W_{0}, L) \subset D(W_{0}, \lambda(G)) \subset f(\overline{D})$.

CollII If f holo. on
$$\Omega \supset \overline{D(0,R)}$$
, then $\exists w_0 \in \mathbb{C}$ s.t.
 $D(w_0, R|f(0)|L) \subset f(D(0,R))$

Pf: Same as the proof of Corl.7 *

\$ 2. The Little Picard Theorem.

$$\begin{array}{l} \mbox{Lowna 2.1 Let} & G = \mbox{supp} - \mbox{connected} \\ & f:G \rightarrow \mathbb{C} \quad \mbox{holo} \\ & 0,1 \notin f(G) \\ \mbox{Then } \exists g:G \rightarrow \mathbb{C} \quad \mbox{holo such that} \\ & f(z) = -\mbox{Log} \left(i\pi \cosh(2g(z)) \right) \quad \forall z \in G \end{array}$$

Pf: Since
$$0 \notin f(G) \approx G$$
 simply-connected,
a branch of log $f(z)$ is well-defined on G .
Let $F(z) = \frac{1}{2\pi i} \log f(z)$.
If $\exists z \in G$ s.t. $F(z) = n$ for some $n \in \mathbb{Z}$, then
 $I = e^{2\pi i n} = e^{\log f(z)} = f(z)$

which is a contradiction as
$$1 \notin f(G)$$
.
 \therefore $n \notin F(G)$, $\forall n \in \mathbb{Z}$.
In particular, $0, 1 \notin F(G)$.
Hence $H(\neq) = \int F(\neq) - \int F(\neq) - 1$ can be defined
(as G is simply-connected)
Clearly $H(\neq) \neq 0 \quad \forall \neq \in G_1$, and
 $g(\neq) = \log H(\neq)$ can be defined.
And $\cosh(2g) + 1 = \frac{e^{2g} + e^{-2g}}{2} + 1 = \frac{(e^g + e^{-g})^2}{2}$
 $= \frac{(H + \frac{1}{H})^2}{2} = \frac{[(JF - JF - i) + (JF + JF - i)]^2}{2}$
 $= 2F = \frac{1}{\pi i} \log f$
 $\Rightarrow f = e^{\pi i} \exp[\pi i \cosh(2g)] = -\exp[\pi i \cosh(2g)]_{X}$

Lomma 2.2 Let
$$G, f \approx g$$
 as in Lomma 2.1. Then
 $D(W_0, I) \setminus g(G) \neq \varphi \quad \forall W_0 \in \mathbb{C}.$

 P_{f} : Claim ∀ N≥1, ≈ m∈Z, ±log(Jn+Jn-1)+±imπ ∉ g(G). Suppose not, let $g(z) = \pm \log(\sqrt{n} + \sqrt{n}) + \pm in\pi$ for some $n \ge 1 \ge m \in \mathbb{Z}$.

Then
$$2 \cosh(2g(z)) = e^{2g(z)} + e^{-2g(z)}$$

$$= e^{\pm 2\log(\ln + \ln - i)} e^{\ln \pi \pi} + e^{\pm 2\log(\ln + \ln - i)} e^{-\ln \pi}$$

$$= e^{\ln \pi \pi} \left[e^{\pm 2\log(\ln + \ln - i)} + e^{\pm 2\log(\ln + \ln - i)} \right]$$

$$= (-i)^{m} \left[(\ln + \ln - i)^{2} + \frac{(}{(\ln + \ln - i)^{2}} \right]$$

$$= (-i)^{m} \left[n + 2\ln(n - i) + n - 2\ln(n - i) + n - i \right]$$

$$= (-i)^{m} 2(2n - i)$$

$$= -(-1)^{m}(2n-1) = -(-1) = 1$$

which is a contradiction of $1 \notin f(G)$

height of rectaugle = $\frac{11}{2} < \sqrt{3}$ width of rectaugle = $\log(\sqrt{n+1}+\sqrt{n}) - \log(\sqrt{n}+\sqrt{n+1})$

Note that
$$\frac{d}{dx} \left[\log (J\overline{x}+J\overline{x}) - \log (J\overline{x}+J\overline{x}-1) \right] < 0$$

width of rectaugle $\leq \log (J\overline{1}+1}+J\overline{1}) - \log (J\overline{1}+J\overline{1}-1)$
 $= \log (J\overline{2}+1) < 1$.
Hence diagonal of the rectaugle $< [(J\overline{2})^2 + 1]^{\frac{1}{2}} = 2$
Thusfae, for any $wo \in \mathbb{C}$, $D(w_{0}, 1)$ must contains a
point in $\{ \pm \log (J\overline{n}+J\overline{n}-1) + \pm in\overline{n}\pi : n \geq 1, m \in \mathbb{Z} \}$
and hence $D(w_{0}, 1) \setminus g(G) \neq \phi$.

Pf: If
$$f(z) \neq 0 \& f(z) \neq b$$
, then $h(z) = \frac{f(z) - a}{b - a} \neq 0, 1$.
So we only need consider the case that $\{a, b\} = \{0, 1\}$.
Since C is simply-connected, Lemma 2.2 =>
 $\forall w_0 \in C$, $D(w_0, 1) \setminus g(C) \neq \phi$. (as in Lemma 2.2)
Suppose on the contrary that $g \neq constant$.

Then
$$g'(z_0) \neq 0$$
 for some $z_0 \in \mathbb{C}$.
We may assume $z_0 = 0$.
Otherwise, consider $g(z + z_0)$ instead.
Cor $|.1| \Rightarrow \exists w_0 \in \mathbb{C}$ such that
 $D(w_0, 1) \subset g(D(0, \frac{1}{1g'(0)1L})) \subset g(\mathbb{C})$
which is a contradict.
 $-: g = constant \cdot x$

Great Picard Thm Suppose
$$z_0 \in \mathcal{I}$$
, f holo on $\mathcal{I} \setminus \{z_0\}$ and
zo is an essential singularity of f. Then in each
neighborhood of z_0 , f absumes each complex number,
with one possible exception, an infaite number of times

Pf: Omitted

Review

Ch2 Cauchy's Thin & Its applications (\$5.5 omitted)
• Holomophic functions defined in term of integrals

$$S_a^b F(z,s) ds$$

• Schwarz schloctzer application

Ch5 Entire Function

- · Jensen's t-ormula
- Functions of Finite Order
 \$f = inf { p if(z) < Ae^{Bizin} for some A = B }

- · Meierstrass Infinite Products &
- · Hadamard's Factorization Thenew (for finish ps<to)

- · Riemann Mapping Thenew
- · Normal Family and Montel's Theorem
- · Hurwitz Thm (and corresponding Rop 35)
- · Confamal Maps anto Polygons,
- · Cartinuan extension to the boundary
- · Schwarz-Christoffel Integnal, Elliptic Integnal

Final exam: May 10 (Wednesday) 9=30-11=30 am, multi-purpose hall, CC,

(overs all material including those in lectures, tutorials, framework, & textbook (including all exercises in Textbook no matter its assigned in homework or not) up to ch8, except Ch7, with emphasis on those material offer the mid-term (i.e. Ch8). But those material before mid-term (i.e. ch1-6) may also be tested directly / explicitly or indirectly / implicitly.