Then clearly, $L \geqslant B \geqslant \frac{1}{72}$

Prop 1. 10 If $\Omega \supset \mathbb{D}, f$ hole on $\Omega, f(0)=0 \& f^{\prime}(0)=1$, then $\exists w_{0} \in \mathbb{C}$ sit. $D\left(w_{0}, L\right) \subset f(\mathbb{D})$.

Pf: Let $\lambda=\lambda(f)$.
Then $\forall n, \exists w_{n} \in \mathbb{C}$ sit. $D\left(w_{n}, \lambda-\frac{1}{n}\right) \subset f(\mathbb{D}) \subset f(\overline{\mathbb{D}})$
By compactness of $f(\bar{D})$, we may assume $W_{n} \rightarrow w_{0} \in f(\overline{\mathbb{D}})$
(by taking subseq $W_{n_{k}} \&$ note that $\lambda-\frac{1}{n_{k}} \geqslant \lambda-\frac{1}{k}$)
If $W \in D\left(W_{0}, \lambda\right)$, then $\left|W-W_{0}\right|<\lambda$ and $\exists n_{0} \geqslant 1$ sit.

$$
\left|w-w_{0}\right|<\lambda-\frac{1}{n_{0}} .
$$

Hence, using $\omega_{n} \rightarrow w_{0}, \exists n_{1} \geqslant n_{0}$ sit.

$$
\begin{aligned}
& \left|w_{n}-w_{0}\right|<\left(\lambda-\frac{1}{n_{0}}\right)-\left|w-w_{0}\right|, \quad \forall n \geqslant n_{1} \geqslant n_{0} \\
\Rightarrow & \left|w-w_{n}\right| \leqslant\left|w-w_{0}\right|+\left|w_{n}-w_{0}\right|<\lambda-\frac{1}{n_{0}} \leqslant \lambda-\frac{1}{n} \\
\Rightarrow & w \in D\left(w_{n}, \lambda-\frac{1}{n}\right) \subset f(\overline{\mathbb{D}}) .
\end{aligned}
$$

Since $w \in D\left(w_{0}, \lambda\right)$ ì arbitrary, $D\left(w_{0}, \lambda\right) \subset f(\bar{D})$

$$
\Rightarrow \quad D\left(w_{0}, L\right) \subset D\left(w_{0}, \lambda(f)\right) \subset f(\bar{D})
$$

Coll. II If f hold. on $\Omega \supset \overline{D(0, R)}$, then $\exists w_{0} \in \mathbb{C}$ s.t.

$$
D\left(w_{0}, R\left|f^{\prime}(0)\right| L\right) \subset f(D(0, R))
$$

Pf: Same as the proof of Cor $1.7 *$
\$2. The Little Picard Theorem

Lemma 2.1 Let $\cdot G=$ simply-connected

- $f: G \rightarrow \mathbb{C}$ holo.
- $0,1 \notin f(G)$

Then $\exists \mathrm{g}: G \rightarrow \mathbb{C}$ nolo such that

$$
f(z)=-\exp (i \pi \cosh (2 g(z))) \quad \forall z \in G
$$

Pf: Since $0 \notin f(G) \& G$ simply-connected, a branch of $\log f(z)$ is well-defined on G.

Let $F(z)=\frac{1}{2 \pi i} \log f(z)$.
If $\exists z \in G$ st. $F(z)=n$ for save $n \in \mathbb{Z}$, the er

$$
1=e^{2 \pi i n}=e^{\log f(z)}=f(z)
$$

which is a contradiction as $1 \notin f(G)$.

$$
\therefore \quad n \notin F(G), \forall n \in \mathbb{Z} .
$$

In particular, $0,1 \notin F(G)$.
Hence $H(z)=\sqrt{F(z)}-\sqrt{F(z)-1}$ can be defied (as G is simeply-cunnected)
Clearly $H(z) \neq 0 \quad \forall z \in G$, and $g(z)=\log H(z)$ can be defined.

And $\cosh (2 g)+1=\frac{e^{2 g}+e^{-2 g}}{2}+1=\frac{\left(e^{g}+e^{-g}\right)^{2}}{2}$

$$
\begin{gathered}
=\frac{\left(H+\frac{1}{H}\right)^{2}}{2}=\frac{[(\sqrt{F}-\sqrt{F-1})+(\sqrt{F}+\sqrt{F-1})]^{2}}{2} \\
=2 F=\frac{1}{\pi i} \log f \\
\Rightarrow f=e^{\pi i} \exp [\pi i \cosh (2 g)]=-\exp [\pi i \cosh (2 g)]
\end{gathered}
$$

Lama 2.2 Let G, f \& g as in Lemma 2.1. Then

$$
D\left(w_{0}, 1\right) \backslash g(G) \neq \varnothing \quad \forall w_{0} \in \mathbb{C} .
$$

Pf: Claim $\forall n \geqslant 1, \& m \in \mathbb{Z}$,

$$
\pm \log (\sqrt{n}+\sqrt{n-1})+\frac{1}{2} i m \pi \notin g(G) .
$$

Suppose not, let $g(z)= \pm \log (\sqrt{n}+\sqrt{n-1})+\frac{1}{2} i m \pi$ for save $n \geqslant 1$ \& $m \in \mathbb{Z}$.

Then $2 \operatorname{cooh}(2 g(z))=e^{2 g(z)}+e^{-2 g(z)}$

$$
\begin{aligned}
& =e^{ \pm 2 \log (\sqrt{n}+\sqrt{n-1})} e^{i m \pi}+e^{\mp 2 \log (\sqrt{n}+\sqrt{n-1})} e^{-i m \pi} \\
& =e^{i m \pi}\left[e^{ \pm 2 \log (\sqrt{n}+\sqrt{n-1})}+e^{\mp 2 \log (\sqrt{n}+\sqrt{n-1})}\right] \\
& =(-1)^{m}\left[(\sqrt{n}+\sqrt{n-1})^{2}+\frac{1}{(\sqrt{n}+\sqrt{n-1})^{2}}\right] \\
& =(-1)^{m}[n+2 \sqrt{n} \sqrt{n-1}+n-1+n-2 \sqrt{n} \sqrt{n-1}+n-1] \\
& =(-1)^{m} 2(2 n-1) \\
\Rightarrow f(z) & =-e^{i \pi(-1)^{m}(2 n-1)}=-(-1)=1
\end{aligned}
$$

which is a contradiction os $1 \notin f(G)$

(reverse tiorizntally if "-"instead of " + ")
height of rectangle $=\frac{\pi}{2}<\sqrt{3}$

$$
\text { width of rectangle }=\log (\sqrt{n+1}+\sqrt{n})-\log (\sqrt{n}+\sqrt{n-1})
$$

Note that $\frac{d}{d x}[\log (\sqrt{x+1}+\sqrt{x})-\log (\sqrt{x}+\sqrt{x-1})]<0$

$$
\begin{aligned}
\text { width of rectangle } & \leq \log (\sqrt{1+1}+\sqrt{1})-\log (\sqrt{1}+\sqrt{1-1}) \\
& =\log (\sqrt{2}+1)<1
\end{aligned}
$$

Hence diagonal of the rectangle $<\left[(\sqrt{3})^{2}+1\right]^{1 / 2}=2$
Therefae, for any $\omega_{0} \in \mathbb{C}, D\left(\omega_{0}, 1\right)$ nest contains a point in $\left\{ \pm \log (\sqrt{n}+\sqrt{n-1})+\frac{1}{2} i m \pi: n \geqslant 1, m \in \mathbb{Z}\right\}$ and hence $D\left(W_{0}, 1\right) \backslash g(G) \neq \varnothing$

Thu 2.3 Little Picard Thy
If f is an entire function that omits two values, then f is a constant.

Pf: If $f(z) \neq a \& f(z) \neq b$, then $h(z)=\frac{f(z)-a}{b-a} \neq 0,1$.
So we only need consider the case that $\{a, b\}=\{0,1\}$.
Since \mathbb{C} is simply-connected, Lemma 2.2 \Rightarrow

$$
\forall w_{0} \in \mathbb{C}, \quad D\left(w_{0}, 1\right) \backslash g(\mathbb{C}) \neq \varnothing . \quad \text { (as in Lemma 2.2) }
$$

Suppose on the contrary that $g \neq$ constant.

Then $g^{\prime}\left(z_{0}\right) \neq 0$ for some $z_{0} \in \mathbb{C}$.
We may assume $z_{0}=0$.
Otherwise, consider $g\left(z+z_{0}\right)$ instead.
Cor $1.11 \Rightarrow$ ヨ $w_{0} \in \mathbb{C}$ such that

$$
D\left(w_{0}, 1\right) \subset g\left(D\left(0, \frac{1}{\left|g^{\prime}(0)\right| L}\right)\right) \subset g(\mathbb{C})
$$

which is a contradict.

$$
\therefore g \equiv \text { constant. }
$$

Great Picard Thy Suppose $z_{0} \in \Omega$, f foll on $\Omega \backslash\left\{z_{0}\right\}$ and z_{0} is an essential singularity of f. Then in each neighborhood of z_{0}, f assumes each complex member, with one possible exception, an infairte number of tines Pf: omitted

Review
Ch1 Preliminaries to Cpx Andlysts
Ch2 Caucly's Thm \& Its applications ($\$ 5.5$ omitted)

- Holomaphic functians defüed in term of iutegrals

$$
\int_{a}^{b} F(z, s) d s
$$

- Schwarz reflection principle

Ch3 Meromaphic Functions \& the Logaritum

Ch 4 Fourier Transfam

- Class $F=\bigcup_{a>0} f_{a}$
- Estunate of \hat{f} far $f \in \mathcal{F}$
- Fourier Inrersion Farmula (fa $f \in F$)
- Porson Summation Fanuula

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \hat{f}(n) \quad\left(f_{u} f \in \mathcal{F}\right)
$$

- Theta function
- Phragmén - Limdelöf Thm (max. proiciple far unbbd donair) (other parts of \$3 anitted)

Ch5 Entire Function

- Jeusen's tormula
- Functions of Fuicte Order

$$
\rho_{f}=\bar{u} f\left\{\rho=|f(z)| \leqslant A e^{\left.B|z|\right|^{0}}, \text { fu sane } A e B\right\}
$$

- Weierstrass Iufüite Products \&
- Hadamard's Factaization Thenem ($f_{u} f$ with $\rho_{f}<+\infty$)

Ch 6 Gamma \& Zeta Functions $\Gamma(s)$ \& $\zeta(s)$

- Analytic cutiunations of Gamma \& Zeta Functions
- Various properties, fanculae, and estimates far $\Gamma(s) \& \zeta(s)$

Ch 7 Zeta Functions and Prove Number Thenem

- $\pi(x) \sim \frac{x}{\log x}$ as $x \rightarrow \infty$

Ch 8 Contanual Mappings

- Corfanal maps \& confamal equivalence
- Angle preserving property
- Explicit confamal nap between \mathbb{D} and \mathbb{H}
- Fractional linear transfamations $z \mapsto \frac{a z+b}{c z+d}$ (translations, rotations, scolings, and inversion),
maps "lures e circles" to "lures e circles"
- Elementary examples of confamal mops between specific domañs.
- Dirichlet problem
- Schurara Lemma
- Automaphism groups

Mut (D) , Mut (H) (and Auto (ID))

- Riemann Mapping Thenem
- Normal Family and Montel's Therm
- Huruitz The (ard correspondias Prop 35)
- Cmfancal Maps onto Polygon,
- Cartucuar extension to the bonadary
- Schwar-Christoffel Integral, Elliptic Integral

Final exam: May 10 (Wednsday) $9: 30-11: 30 \mathrm{am}$, multi-purpose hall, $C C$.
covers all material including those in lectures, tutorials, honewak, \& textbook (including all exercises in Textbook no matter it's assigned in homewark a not) up to ch 8 , except Ch 7, with emphasis an those material offer the nid-tem (ie. Chs). But those material before mid-tene (ie. (h1-6) may also be tested directly/ explicitly or indirectly/implicitly.

