Ch 9 Elliptic Functions
Recall: The elliptic integral

$$
I(z)=\int_{0}^{z} \frac{d s}{\left[\left(1-s^{2}\right)\left(1-t^{2} s^{2}\right)\right]^{1 / 2}} \quad(0<k<1)
$$

gives a map conformal map of H to the interior of the rectangle R with vertices $-k, k, k+i k^{\prime},-k+i k^{\prime}$

Let $s n=I^{-1}=R \longrightarrow H$ be the inverse conformal map.
Then boundary straight lime segments are map into real axis, Schwarz reflection principle extend $s n(z)$ analytically to

by $\operatorname{sn}(z)=\overline{\operatorname{sn}(\bar{z})}$ for any z in the reflected rectangle.

Again the extended $\operatorname{sn}(z)$ maps boundary straight line segments into real axis, Schwarz reflection principle implies $\operatorname{Sn}(z)$ is extended analytically to

$$
\begin{aligned}
& \text { For } z \in R_{z}, \\
& \begin{aligned}
\operatorname{sn}(z) & =\overline{\operatorname{sn}\left(-i 2 k^{\prime}+\bar{z}\right)} \\
& =\operatorname{sn}\left(i 2 k^{\prime}+z\right)
\end{aligned}
\end{aligned}
$$

(typo in Textbook)

$$
\left(z \in R_{2} \Rightarrow-i 2 k^{\prime}+\bar{z} \in R_{1} \Rightarrow i 2 k^{\prime}+z \in R\right)
$$

Note that $S n(z)$ has a pole in the interior of $R \cup R_{1} \cup R_{2}$ as $I(\infty) \in\left(-K+i K^{\prime}, k+i K^{\prime}\right)$ and hence a point on $\left(-K-i K^{\prime}, K^{\prime}-i k^{\prime}\right)$ maps back to ∞.

And 50 on, and also reflect upward, $\operatorname{sn}(z)$ is analytically continnated to the infinite strip

$$
s n=\{-k<\operatorname{Re}(z)<k\} \longrightarrow \mathbb{C}
$$

such that boundary vertical limes are maps ito real-axis.
Applying reflection principle again but horizontally

$$
\begin{aligned}
& \operatorname{sn}(z)=\overline{s n(-\bar{z}+2 k)}=\operatorname{sn}(z+4 k)
\end{aligned}
$$

$\operatorname{sn}(z)$ is extended to a meromorphic functions on \mathbb{C} with

$$
\left\{\begin{array}{l}
\sin (z)=\sin \left(z+2 i k^{\prime}\right) \\
\sin (z)=\sin (z+4 k)
\end{array}\right.
$$

SI Elliptic Functions

Def: A function f with 2 periods ω_{1} and ω_{2}, ie.

$$
f\left(z+w_{1}\right)=f(z) \& \quad f\left(z+\omega_{2}\right)=f(z) \quad \forall z \in \mathbb{C}
$$

is said to be doubly periodic.

Remark: If $\omega_{1} \& \omega_{2}$ are linear dependent over \mathbb{R} is uninteresting.
In fact, if $\omega_{2} / \omega_{1} \in \mathbb{R}$ (note: $\omega_{1}, \omega_{2} \neq 0$ as periods), then either f is periodic with a süuple period $\left(\omega_{2} / \omega_{1} \in \mathbb{G}\right)$ or $f \equiv$ cost.

$$
\left(\omega_{2} / \omega_{1} \in \mathbb{R} \backslash \mathbb{Q}\right)
$$

Hence, we always assume without loss of generality that

$$
\operatorname{Im} \tau>0 \text {, ie. } \tau \in \mathbb{H} \quad\binom{\text { interchanging }}{\omega_{1} \varepsilon \omega_{2}, i \phi n e d} .
$$

Note: f has periods $\omega_{1} \& \omega_{2}$

$$
\begin{gathered}
\Rightarrow F(z) \stackrel{\text { def }}{=} f(\omega, z) \text { has period } 1 \& \tau \\
\binom{F(z+1)=f\left(\omega, z+\omega_{1}\right)=f(\omega, z)=F(z)}{F(z+\tau)=f\left(\omega, z+\omega_{1} \tau\right)=f\left(\omega, z+\omega_{2}\right)=f(\omega, z)=F(z)}
\end{gathered}
$$

And f meromorphic $\Leftrightarrow F$ meromorphic

One only need to study doubly periodic meromorphic functions with periods 1 and τ with $\operatorname{Im}(\tau)>0$.

Def: The set $\Lambda=\{n+m \tau=n, m \in \mathbb{Z}\}$ is called the lattice generated by 1 and τ

Def: The fundamental parallelogram associated to the lattice \wedge is

$$
P_{0}=\{z \in \mathbb{C}: z=a+b \tau \text {, where } 0 \leqslant a<1 \& 0 \leqslant b<1\}
$$

A period parallelogram P is any translation of P_{0} :

$$
P=P_{0}+h \text {, wish } h \in \mathbb{C} \text {. }
$$

Easy Facts: (Pro p.1.1)
(I) If f is doubly periodic with periods $1 \& \tau$, then

$$
f(z+\lambda)=f(z) \quad \forall \lambda \in \Lambda, \quad \forall z \in \mathbb{C}
$$

(ie. $f(z+m+n \tau)=f(z), \forall m, n \in \mathbb{C}, \forall z \in \mathbb{C}$)
$\therefore f$ is constant under translations by elements in Λ.
ie. if $z \sim w$ congruent modulo \wedge
(where $z \sim w \bmod \Lambda \Leftrightarrow z-w \in \Lambda$)
then $f(z)=f(w)$
(2) Any $z \in \mathbb{C}, \exists$ unique pt. $w \in P_{0}$ sit.

$$
z \sim w \bmod \wedge .
$$

Same conclusion far any period ponallelogrom $P=P_{0}+h$.
Pf: Let $z \in \mathbb{C}$.

$$
\begin{aligned}
& \operatorname{Im}(\tau)>0 \Rightarrow \exists a, b \in \mathbb{R} \text { sit. } z=a+b \tau \\
& \Rightarrow \quad Z=(a-[a])+(b-[b]) L+([a]+[b] \tau)
\end{aligned}
$$

where $[a]=$ largest integer $\leqslant a$, same fa b.

Then $w=(a-[a])+(b-[b]) \tau \in P_{0}$ sit.

$$
z-W=[a]+[b] \tau \in \Lambda
$$

For uniqueness, if $w_{1}, w_{2} \in P_{0}$ sit. $Z \sim w_{1} \& z \sim w_{2}$.
Then $W_{1} \wedge W_{2}$, is. $W_{1}-W_{2} \in \Lambda$.
Note that if $w_{i}=a_{i}+b_{i} \tau, i=1,2$
then $\quad w_{1}-w_{2}=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) \tau \in \Lambda$
Hence $\quad a_{1}=a_{2}+n$ and $b_{1}=b_{2}+m$
for some $n, m \in \mathbb{Z}$.
But $w_{i} \in P_{0} \Rightarrow 0 \leqslant a_{i}<1$ \& $0 \leqslant b_{i}<1$

$$
\begin{aligned}
& \Rightarrow \quad\left|a_{1}-a_{2}\right|<1 \& \quad\left|b_{1}-b_{2}\right|<1 \\
& \Rightarrow \quad n, m=0 \\
\therefore w_{1} & =w_{2}
\end{aligned}
$$

Applying above to $z+h$, we have the result for P
(3) If f is doubly periodic with periods $1 \& \tau$, then f is uniquely determined by $\left.f\right|_{P}$ fa any $P=P_{0}+h$.
Pf: Easy consequence of $(1) \&(2)$.
(4) $\mathbb{C}=\bigcup_{n, m \in \mathbb{Z}}\left(n+m \tau+P_{0}\right)$
\therefore (1) is covered by period parallelograms (translated by lattice points) and the union is disjoint
1.1 Liouville's Theorem

Thm1.2 An entire doubly periodic function is constant.
Pf: By Prop 1.1 (Easy facts), $\sup _{\mathbb{C}}|f|=\sup _{P_{0}}|f|$
If f is entire, $\sup _{P_{0}}|f|$ is finite. Hence f is bod on \mathbb{C}. Liouville's Thou $\Rightarrow f \equiv$ cost.

So we define
Def: A non-constant doubly periodic meromaphic function is called an elliptic function.

The 1. 3 The total number (counting multiplicity) of poles of an elliptic function in P_{0} is always $\geqslant 2$

Pf: Suppose that f has no poles on ∂P_{0}.
Then

$$
\begin{aligned}
2 \pi i \sum \operatorname{Res} f & =\int_{\partial P_{0}} f \\
& =\left(\int_{0}^{1}+\int_{1}^{1+\tau}+\int_{1+\tau}^{\tau}+\int_{\tau}^{0}\right) f(z) d z
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \int_{1+\tau}^{\tau} f(z) d z=\int_{1}^{0} f(z+\tau) d z=\int_{1}^{0} f(z) d z \quad(\tau \text { i a period }) \\
& \int_{1}^{1+\tau} f(z) d z=\int_{0}^{\tau} f(z+1) d z=\int_{0}^{\tau} f(z) d z \quad(1 \text { is a period }) \\
& \therefore \quad 2 \pi i \sum \operatorname{Res} f=0
\end{aligned}
$$

$\Rightarrow f$ has at least 2 poles (counting multiplicity),
Otherwise $\sum \operatorname{Res} f \neq 0$.
If f has a pole on P_{0}, then choose $h \in \mathbb{C}$ small enough such that f has no pole on ∂P, where $P=P_{0}+h$. Same argument shows that f has at least 2 poles.

The 1.4 Every elliptic function of order m has m zeros in P_{0}. (The total number of poles (counting multiplicity) of an elliptic function is called its order.)

Pf: $1^{\text {st }}$ assume no zeros a poles on ∂P_{0}.
Then argument primiple \Rightarrow

$$
2 \pi i\left(N_{z}-N_{p}\right)=\int_{\partial p_{0}} \frac{f^{\prime}(z)}{f(z)} d z
$$

where $N_{z}=$ number of zeros
(counting multiplicity)

$$
N_{p}=\text { number of poles }=\text { order of } f=m
$$

Same argument as in the proof in The 1.3, periodicity \Rightarrow

$$
\int_{\partial P_{0}} \frac{f^{\prime}}{f}=0 \Rightarrow N_{z}=N_{p}=m
$$

If f has zeros or poles on ∂P_{0}, then wats on ∂P of $P=P_{0}+h$ with small $h \in \mathbb{C}$.

Cor If f is an elliptic function of order m, then $\forall c \in \mathbb{C}$ $f(z)=C$ has m solutions in P_{0} (counting multiplicity)

Pf: $\forall C \in \mathbb{C}, f-c$ is also an elliptic function with same periods 1 \& τ.
1.2 The Weierstrass \&f function
(An elliptic function of order 2)
Lemma 1.5 If $r>2$,

$$
\sum_{(n, m) \neq(0,0)} \frac{1}{(|n|+|m|)^{r}} \text { and } \sum_{(n, m) \neq(0,0)} \frac{1}{|n+m \tau|^{r}} \text { converge }
$$

Pf: As both series has positive term, convergent is equivalent to absolute convergent.
Hence the order of sum, ie rearrangement, doesn't matter. (provided we can prove convergence.)

Fix an $n \neq 0$, and consider

$$
\begin{aligned}
\sum_{m \in \mathbb{Z}} \frac{1}{(|n|+|m|)^{r}} & =\frac{1}{|n|^{r}}+2 \sum_{m=1}^{\infty} \frac{1}{(|n|+m)^{r}} \\
& =\frac{1}{|n|^{r}}+2 \sum_{k=|n|+1}^{\infty} \frac{1}{k^{r}} \\
& \leqslant \frac{1}{|n|^{r}}+2 \int_{|n|}^{\infty} \frac{d x}{x^{r}} \\
& =\frac{1}{|n|^{r}}+\frac{2}{r-1} \frac{1}{|n|^{r-1}} \\
\sum_{(n, m) \neq(0,0)} \frac{1}{(|n|+|m|)^{r}} & =\sum_{m \neq 0} \frac{1}{|m| r}+\sum_{n \neq 0} \sum_{m \in \mathbb{Z}} \frac{1}{(|n|+|m|)^{r}}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant 2 \sum_{m=1}^{\infty} \frac{1}{m^{r}}+\sum_{n \neq 0}\left(\frac{1}{|n|^{r}}+\frac{2}{r-1} \frac{1}{|n|^{r-1}}\right) \\
& <+\infty \quad \quad(\text { since } \quad r>2 \Rightarrow r-1>1)
\end{aligned}
$$

\therefore The series $\sum_{(n, m) \neq(0,0)} \frac{1}{(|n|+|m|)^{r}}$ converges.
To prove the $2^{\text {nd }}$ series converges, we clam that Claim: $\forall \tau \in H, \exists \delta_{\tau} \in(0,1)$ such that

$$
|n+m \tau| \geqslant \delta_{\tau}|n+m i| \quad \forall \quad n, m \in \mathbb{Z} .
$$

Pf of claim: Consider function $f(x)=\frac{|x+\tau|}{|x+i|}, \forall x \in \mathbb{R}$.
Then clearly f is continuous on $\mathbb{R}, \quad f(x)>0, \forall x \in \mathbb{R}$. and $f(x) \rightarrow 1$ as $x \rightarrow \pm \infty$. Hence $\exists 1>\delta_{\tau}>0$ sit. $f(x) \geqslant \delta_{\tau}$. Putting $x=\frac{n}{m}, m \neq 0$, we have $\frac{\left|\frac{n}{m}+\tau\right|}{\left|\frac{n}{m}+i\right|} \geq \delta_{\tau}$ $\Rightarrow \quad|n+m \tau| \geqslant \delta_{\tau}|n+i m|, \quad \forall n$ and $\forall m \neq 0$ Since $0<\delta \tau<1$, the inequality is clearly correct for $m=0$ The claim is proved.

By the claim $|n+m \tau| \geq \delta_{\tau}|n+m i|=\delta_{\tau}\left(n^{2}+m^{2}\right)^{1 / 2}$

$$
\geqslant \frac{\delta_{\tau}}{2}(|n|+|m|)
$$

Hence $\quad \frac{1}{|n+m \tau|^{r}} \leqslant \frac{2}{\delta_{\tau}} \frac{1}{(|m|+|n|)^{r}}$

$$
\therefore \text { convergence of } \sum_{(n, m) \neq(0,0)} \frac{1}{(|m|+|n|)^{r}}
$$

\Rightarrow convergence of $\sum_{(n, m) \neq(0,0)} \frac{1}{|n+m \tau|^{r}}$

Remarks: (i) If $\operatorname{Im}(\tau) \geqslant t_{0}>0$, then

$$
\frac{|x+\tau|}{|x+i|} \geq \frac{|x+s|+t_{0}}{2|x+i|} \text {, where } s=\operatorname{Re}(\tau) \text {. }
$$

\therefore The lower bound δ_{I} can be chosen depending on the lower bound to of $\operatorname{Im}(\tau)$, but not $\operatorname{Im}(\tau)$.
(ii) $\mathrm{Eg}:$ Let $I=-k+i \quad$ fa some $k \in \mathbb{Z}$

Then $f_{a}(n, m)=(k, 1), \quad|n|+|m|=|k|+1$ and $|n+m \tau|=1$
\therefore If $\exists c>0$ sit. $\quad c(|n|+|m|) \leqslant|n+m \tau| \quad \forall(n, m) \in \mathbb{Z}^{2}$.
we have

$$
c(|k|+1) \leqslant 1
$$

$$
\Rightarrow \quad C \leqslant \frac{1}{|s|+\mid} \quad \longrightarrow 0 \quad \text { as } \quad|s| \rightarrow \infty
$$

Hence such constant must depends on the upper bd. of $|\operatorname{Re}(\tau)|$. (\therefore Remark on Textbook page 269 is not accurate.)

Def: Let $\Lambda=$ lattice generated by $\mid \& \tau(\tau \in \mathbb{H})$ and denote

$$
\Lambda^{*}=\Lambda \backslash\{(0,0)\}
$$

The Weierstrass 8 Function is defined by

$$
\gamma=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda^{*}}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]
$$

Th 1.68 is an elliptic function with periods 1 and τ, and double poles at the lattic points.

Pf: Step 1 The series converges and 8 is a meromaphic function with double poles at $\omega \in \Lambda$.

Pf of Step 1: Let $R>0$. Then $\forall|z|<R$,

$$
\begin{aligned}
& 8(z)=\frac{1}{z^{2}}+\sum_{\substack{|\omega| \leqslant 2 R \\
\omega \neq 10,0\rangle}}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]+\sum_{|\omega|>2 R}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right] \\
& \frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}=\frac{\omega^{2}-(z+\omega)^{2}}{(z+\omega)^{2} \omega^{2}}=\frac{-z^{2}-2 z \omega}{\omega^{2}(z+\omega)^{2}}
\end{aligned}
$$

\Rightarrow FO $|z|<R$ and $|\omega|>2 R, \exists C>0$ (Depending only on $R \& \tau$)

$$
\text { s.t. }\left|\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right| \leqslant \frac{C}{|\omega|^{3}}=\frac{c}{|n+m \tau|^{3}} \quad(|n+m \tau|>2 R)
$$

By Lemma 1.5 $\sum_{|\omega|>2 R}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]$ converges uniformly on $|z|<R$
$\therefore \quad \sum_{|\omega|>2 R}\left[\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right]$ is holomaphic in $|z|<R$
$\therefore P(z)$ is meromaphic in $\{|z|<R\}$ with double poles exactly at $z=-\omega \in \Lambda$ with $|\omega|<R$.

Since $R>0$ is arbitrary, Step 1 is proved.
Step 2: Th as periods 1 and τ.
Pf of Step 2: By the proof of Step 1, P^{\prime} can be calculate termuise and we have

$$
P^{\prime}(z)=-\frac{2}{z^{3}}+\sum_{\omega \in \wedge^{*}} \frac{-2}{(z+\omega)^{3}}=-2 \sum_{n, m \in \mathbb{Z}} \frac{1}{(z+n+m \tau)^{3}}
$$

which converges absolutely (and locally unifarmly) for $z \notin \Lambda$.

$$
\Rightarrow\left\{\begin{array}{ll}
P^{\prime}(z+1)=P^{\prime}(z) \\
y^{\prime}(z+\tau)=\mathscr{P}^{\prime}(z)
\end{array} \quad \text { fa all } z \notin \Lambda\right.
$$

($\therefore \mathcal{P}^{\prime}$ is an elliptic function of order 3)
Since all poles are triple poles and have no residue, path integration gives well-defined constants a \& b sit.

$$
\left\{\begin{array}{l}
P(z+1)=P(z)+a \\
P(z+\tau)=P(z)+b
\end{array} \quad \forall z \notin \Lambda\right.
$$

Observe that $P(z)=\mathscr{P}(-z)$ by construction.

$$
\therefore\left\{\begin{array}{l}
\varnothing\left(-\frac{1}{2}\right)=\varnothing\left(\frac{1}{2}\right)=\varnothing\left(-\frac{1}{2}+1\right)=\varnothing\left(-\frac{1}{2}\right)+a \\
\varnothing\left(-\frac{\tau}{2}\right)=\varnothing\left(\frac{\tau}{2}\right)=\varnothing\left(-\frac{\tau}{2}+\tau\right)=\varnothing\left(-\frac{\tau}{2}\right)+b
\end{array}\right.
$$

$\Rightarrow a=0$ and $b=0$
$\therefore P(z)$ has periods $1 \& \tau$.
This completes the proof of the Thu.

Properties of \wp
(1) P^{\prime} is odd
(2) $\varphi^{\prime}\left(\frac{1}{2}\right)=\wp^{\prime}\left(\frac{\tau}{2}\right)=\varphi^{\prime}\left(\frac{1+\tau}{2}\right)=0$
and $\frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}$ are the only roots of \wp^{\prime} in P_{0}
Pf: (I) P even $\Rightarrow P^{\prime}$ odd.
(2) $Q^{\prime}\left(\frac{1+\tau}{2}\right)=-Q^{\prime}\left(-\frac{1+\tau}{2}\right)$ by (1)

$$
\begin{aligned}
& =-\varphi^{\prime}\left(-\frac{1+\tau}{2}+1+\tau\right) \quad \text { periods } 1 \& \tau \\
& =-Q^{\prime}\left(\frac{1+\tau}{2}\right) \\
\Rightarrow \varphi^{\prime}\left(\frac{1+\tau}{2}\right) & =0 .
\end{aligned}
$$

Similarly, $B\left(\frac{1}{2}\right)=P^{\prime}\left(\frac{\tau}{2}\right)=0$.
Since Q^{\prime} has oder 3. The 1.4 P^{\prime} has exactly 3 roots in P_{0} $\therefore \frac{1}{2}, \frac{\tau}{2} \& \frac{1+\tau}{2}$ are all roots of ψ^{\prime} in P_{0}

Remarks: (i) $\frac{1}{2}, \frac{\tau}{2}, \& \frac{1+\tau}{2}$ are called the half-periods
(ii) All has multiplicity 1.

Let $e_{1}=P\left(\frac{1}{2}\right), e_{2}=\varphi\left(\frac{\tau}{2}\right), e_{3}=P\left(\frac{1+\tau}{2}\right)$.
Then
(1) $\forall i=1,2,3, \quad P(z)=e_{i}$ has a double root at $\frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}$ respectively.
(2) $e_{i}, i=1,2,3$, are distinct.

Pf: Since $\frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}$ are critical points of P, they are multiple roots of $Q(z)=e_{i}$ in P_{0}, respectively.

Then P has order $2 \Rightarrow$ all are double roots in P_{0}.
This proves (1).
If e_{i} are not distinct, then one of $P(z)=e_{i}$
has 4 roots (counting multiplicity) in P_{0}.
This contradicts the fact that order of $\varnothing=2$.
\therefore (2) is proved

Th 1.7 $\left(\varphi^{\prime}\right)^{2}=4\left(8-e_{1}\right)\left(8-e_{2}\right)\left(8-e_{3}\right)$

Pf: $\left(P^{\prime}\right)^{2}$ has double roots at $\frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}$ in P_{0} and
same for $\left(8-e_{1}\right)\left(8-e_{2}\right)\left(8-e_{3}\right)$.
$\left(8^{\prime}\right)^{2}$ has poles of order 6 at $\omega \in \Lambda$ and same for $\left(8-e_{1}\right)\left(8-e_{2}\right)\left(8-e_{3}\right)$.
$\therefore \frac{\left(\wp^{\prime}\right)^{2}}{\left(8-e_{1}\right)\left(8-e_{2}\right)\left(\wp-e_{3}\right)}$ is tolomophic.

Clear, it is ado doubly periodic. Thm 1.2 \Rightarrow

$$
\frac{\left(8^{\prime}\right)^{2}}{\left(8-e_{1}\right)\left(8-e_{2}\right)\left(8-e_{3}\right)}=c \quad \text { (constant) }
$$

By the series expansions of P and P^{\prime}, we have, hear $z=0$,

$$
\left\{\begin{array}{l}
\varphi(z)=\frac{1}{z^{2}}+\cdots \\
\varphi^{\prime}(z)=\frac{-2}{z^{3}}+\cdots
\end{array}\right.
$$

\therefore Near $z=0$,

$$
\begin{aligned}
& c=\frac{\left(8^{\prime}\right)^{2}}{\left(8-e_{1}\right)\left(8-e_{2}\right)\left(8-e_{3}\right)}=\frac{\frac{4}{z^{6}}(1+\cdots)}{\frac{1}{z^{6}}(1+\cdots)} \\
& \Rightarrow c=4 .
\end{aligned}
$$

