4.5 Return to Elliptic Integrals

In Eg 3 of section 4.1, it was shown that the elliptic integral

$$
I(z)=\int_{0}^{z} \frac{d s}{\sqrt{\left(1-s^{2}\right)\left(1-k^{2} s^{2}\right)}} \quad(0<k<1)
$$

maps \mathbb{R}-axis to the boundary of the rectangle:

where $k=k(k)=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}$

$$
k^{\prime}=k^{\prime}(k)=\int_{1}^{1 / k} \frac{d x}{\sqrt{\left(x^{2}-1\right)\left(1-k^{2} x^{2}\right)}} .
$$

However, we mantimed that we haver't proved that $I(z)$ maps H confamally onto R. Now, we can skew it by Thu 4.6 as follows.

For this purpose, we need a lemma

Lemma (Ex 15 of the Textbook on pg 251)
(a) If $\Phi \in \operatorname{Aut}(\mathbb{H})$ and \exists distinct points A_{1}, A_{2}, A_{3} on \mathbb{R}-axis such that $\Phi\left(A_{i}\right)=A_{i}$, far $i=1,2,3$.

Then $\Phi=I d_{\mathbb{H}}$
(b) Let $x_{1}<x_{2}<x_{3}$ and $y_{1}<y_{2}<y_{3} \quad\left(x_{i}, y_{i} \in \mathbb{R}\right)$.

Then $\exists \Phi \in \operatorname{Aut}(\mid H 1)$ such that

$$
\Phi\left(x_{i}\right)=y_{i}, \quad i=1,2,3 .
$$

Same conclusion holds if $y_{3}<y_{1}<y_{2}$ or $y_{2}<y_{3}<y_{1}$
(Pf: Ex!)
Pf of $I(t): H H \rightarrow$ conformal
Let $F: H \rightarrow R$ be a conformal map (existence by Riemann Mapping)
Let $A_{1}<A_{2}<A_{3}<A_{4} \quad\left(A_{4}\right.$ may $\left.=\infty\right)$ be points that maps to the vertices $-k, k, K+i k^{\prime},-k+i K^{\prime}$

By Thu 4.6, F maps $\left[A_{2}, A_{3}\right]$ to $[-K, K]$.
Hence $\quad A_{2}<F^{-1}(0)<A_{3}$
By lemma above, $\exists \Phi \in \operatorname{Aut}(\mid-1)$ such that

$$
\Phi(-1)=A_{2}, \Phi(0)=F^{-1}(0), \Phi(1)=A_{3} .
$$

$\Rightarrow G=F \circ \Phi=H H R$ confamal and satisfies

$$
\left\{\begin{array}{l}
G(-1)=-k \\
G(0)=0 \\
G(1)=k
\end{array}\right.
$$

Then note that the upper-half plane H and the rectangle R are symmetric wort

$$
\begin{aligned}
& x+i y=z \mapsto-\bar{z}=-x+i y \quad \xrightarrow{\frac{1}{0} k} \\
& G^{*}(z)=-\overline{G(-\bar{z})}: H H \xrightarrow{z \mapsto-\bar{z}} H \xrightarrow{G} R \xrightarrow{w \mapsto-\bar{w}} R
\end{aligned}
$$

Cauchy-Riemann equation (\& Chain rule) (Typo in the $\Rightarrow G^{*}=H \rightarrow R$ is also confamal. Textbook.)

Hence $G^{-1} \circ G^{*}=H \rightarrow \mathbb{H} \in \operatorname{Aut}(\mathbb{H})$.
Observe $G^{*}(1)=-\overline{G(-1)}=K=G(1)$

$$
G^{*}(-1)=-\overline{G(1)}=-K=G(-1)
$$

$$
G^{*}(0)=-\overline{G(0)}=0=G(0) .
$$

The Lemma $\Rightarrow G^{-1} \circ G^{*}=I d_{H}$, ie. $G=G^{*}$.

$$
\begin{aligned}
& K+i K^{\prime}=F\left(A_{4}\right)=G\left(\Phi^{-1}\left(A_{4}\right)\right)=G^{*}\left(\Phi^{-1}\left(A_{4}\right)\right)=-\overline{G\left(-\Phi^{-1}\left(A_{4}\right)\right)} \\
\Rightarrow & G\left(-\Phi^{-1}\left(A_{4}\right)\right)=\overline{\left(-K-i K^{\prime}\right)}=-K+i K^{\prime}=F\left(A_{1}\right)=G\left(\Phi^{-1}\left(A_{1}\right)\right)
\end{aligned}
$$

By iujectivity, $\quad \Phi^{-1}\left(A_{1}\right)=-\Phi^{-1}\left(A_{4}\right)$.
Together wish the orientation, we nest have

$$
\Phi^{-1}\left(A_{4}\right)>1
$$

And heave $\exists l \in(0,1)$ sit. $\Phi^{-1}\left(A_{4}\right)=\frac{1}{l}$.
Altogether, we neay assume the reap
$F=|H| \rightarrow P$ and points $A_{1}, A_{2}, A_{3}, A_{4}$ at the beginning of the proof satisfies

$$
\begin{gathered}
F(0)=0 \text { and } \\
A_{1}=-\frac{1}{l}, A_{2}=-1, A_{3}=1, A_{4}=\frac{1}{l} \quad(0<l<1)
\end{gathered}
$$

By Thm 4.6, $\exists C_{1}, C_{2}$ such that

$$
F(z)=c_{1} \int_{0}^{z} \frac{d \zeta}{\sqrt{\left(1-s^{2}\right)\left(1-l^{2} s^{2}\right)}}+c_{2}
$$

$$
\left(\begin{array}{l}
\text { Note that mure precisely, } \\
c_{1}^{\prime} \int_{0}^{z} \frac{d \zeta}{\sqrt{\left(\xi+\frac{1}{e}\right)(\zeta+)(\xi-1)\left(\zeta-\frac{-匕}{e}\right)}}+c_{2} \\
\therefore c_{1}=e c_{1}^{\prime}
\end{array}\right)
$$

Using $F(0)=0$, we have $C_{2}=0$

Putting $z=1, \frac{1}{l}$ in the facula, we have

$$
K(k)=K=c_{1} \int_{0}^{1} \frac{d \xi}{\sqrt{\left(1-\xi^{2}\right)\left(1-l^{2} \zeta^{2}\right)}}=c_{1} K(l)
$$

and

$$
\begin{aligned}
k+i K^{\prime} & =F\left(\frac{1}{l}\right)=c_{1}\left[K(l)+\int_{1}^{\frac{1}{l}} \frac{d \zeta}{\sqrt{\left(1-\zeta^{2}\right)\left(1-l^{2} \zeta^{2}\right)}}\right] \\
& =c_{1} k(l)+c_{1} i \int_{1}^{\frac{1}{l}} \frac{d x}{\sqrt{\left(x^{2}-1\right)\left(1-l^{2} x^{2}\right)}} \\
\Rightarrow \quad K^{\prime}(k) & =c_{1} K^{\prime}(l)
\end{aligned}
$$

By Ex: 24 of the Textbook,

$$
\begin{aligned}
& K^{\prime}(k)=K\left(\sqrt{1-k^{2}}\right) \\
& \therefore \text { we have }\left\{\begin{array}{l}
K(k)=c_{1} K(l) \\
K\left(\sqrt{1-b_{2}^{2}}\right)=c_{1} K\left(\sqrt{1-l^{2}}\right)
\end{array}\right. \\
& \Rightarrow \frac{K(k)}{k\left(\sqrt{1-k^{2}}\right)=\frac{K(l)}{K\left(\sqrt{1-l^{2}}\right)}}
\end{aligned}
$$

Clearly $K(k)$ is strictly increasing is $k,(O<k<1)$ (Ex!) $\Rightarrow \quad K\left(\sqrt{1-k^{2}}\right)$ is strictly decreasing in k.
$\therefore \quad \frac{k(k)}{k\left(\sqrt{1-k^{2}}\right)}$ is strictly increasing in k.
Hence $k=l$, and sheer $c_{1}=1$.

$$
\therefore \quad F(z)=\int_{0}^{z} \frac{d \zeta}{\sqrt{\left(1-\zeta^{2}\right)\left(1-k^{2} \zeta^{2}\right)}}
$$

