4.3 Boundary Behavior

Let P = polygonal region with boundary F(polygon)Then P is bounded, shipply-connected open & connected.

Thm 4.2 If
$$F:D \rightarrow P$$
 is a conformal map,

then F extends to a continuous bijection

from the closure \overline{D} to the closure \overline{P} .

Ta particular $F|_{\partial D} = \partial D \rightarrow F$ its 2 bijective.

Remark: Thur 4,2 is not true for general proper simply-connected regions. It is true \iff DIZ is a Jordan curve,

Eg:
$$\Omega = \bigoplus$$

Commot be

injective.

(Proof Omitted)

$$E_{0}^{2}: \qquad \mathcal{I} = \bigcup_{0 = 1 \atop 0 = 1 \atop 4 \atop 2} (0,2) \times (0,2) \setminus \bigcup_{n=1}^{\infty} \left\{ \frac{1}{n} + \lambda y : 0 < y < 1 \right\}$$

is a simply-connected proper region. But $F = D > \Omega$ cannot be extended cultinuously to ∂D . (Proof omitted)

Pf of Thm 4.2

Recall that the Jacobian determinant of a holo function F is $|F(z)|^2$ when regarded as a z-variables to 2-variables transformation w = f(z).

Hence for <u>conformal</u> $F = U \rightarrow F(U)$ Area $F(U) = \int \int_{7}^{7} |F(z)|^2 dx dy$

Lemma 4.3 Let Zo∈ DD, and

Cr = {5: 15-20 = r} \ \ O < r < \2

Suppose that for sufficiently small r,

two points $z_r, z_r \in D \cap C_r$ are given, and denote $P(r) = |F(z_r) - F(z_r')|.$

Then \exists seg. r_n with $r_n \rightarrow 0$ as $n \rightarrow +\infty$ such that $\lim_{n \rightarrow \infty} \rho(r_n) = 0$

Pf: Suppao not.

Then I c>0 and 0<R</2 such that

P(r) 2 C , Y O < r < R

Let α be the arc on C_r joining $Z_r \otimes Z_r'$ in \mathbb{D} , then $F(Z_r) - F(Z_r') = \int_{\mathcal{A}} F(S) dS$

Paramotrise of by
$$S = Z_0 + re^{iQ}$$
, $Q(r) \le \theta \le Q_2(r)$,

then $P(r) \le \int_{Q(r)}^{Q(r)} |F(s)|^2 r d\theta$

(Cauchy-Schwarz) $\le \left(\int_{Q(r)}^{Q_2(r)} |F(s)|^2 r d\theta\right)^{\frac{1}{2}} \left(\int_{Q(r)}^{Q_2(r)} r d\theta\right)^{\frac{1}{2}}$
 $\Rightarrow \frac{c^2}{r} \le \frac{P_1^2(r)}{r} \le 2\pi \int_{Q_1(r)}^{Q_2(r)} |F(s)|^2 r d\theta$
 $\Rightarrow \forall r \in (0, \mathbb{R})$
 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \frac{1}{2}$,

 $\Rightarrow \forall 0 < \delta < \mathbb{R} < \mathbb{R} > \mathbb{R}$