S4 Conformal Mappūgs onto Polygons
"Explicit" formula of conformal napping from H to polygons.
4.1 Some examples

Eg. Recall $f(z)=z^{2}$ is a conformal map from
IH to the sector $\{z=0<\arg z<\alpha \pi\}, \quad 0<\alpha<2$
(Eg 2 of section 1, page 210 on the Textbook)

- Note that

$$
z^{\alpha}=f(z)=\int_{0}^{z} f^{\prime}(s) d \xi=\alpha \int_{0}^{z} s^{\alpha-1} d s
$$

denote $\beta=1-\alpha$, then

$$
f(z)=z^{\alpha}=\alpha \int_{0}^{z} s^{-\beta} d s \text { with } \alpha+\beta=1
$$

- The integral can be taken along any path in H.

Cantinciity \Rightarrow any path in closure of HI , i.e. including live segments along the \mathbb{R}-axis.

- $0<\alpha<2 \Rightarrow \beta<1 \Rightarrow \zeta^{-\beta}$ integrable at $\zeta=0$.

$$
\Rightarrow\left\{\begin{array}{l}
f(z)=\int_{0}^{z} s^{-\beta} d s \text { defused at } z=0 \text { and } \\
f(0)=0
\end{array}\right.
$$

(Origually $z^{\alpha}=e^{\alpha \log z}$ is not defined fur $z=0!$)

- Boundary mapping as in the figure

Eg Consider $f=\underset{\psi}{H} \rightarrow \underset{\sim}{\mathbb{C}}$
$z \mapsto \int_{0}^{z} \frac{d \zeta}{\left(1-\zeta^{2}\right)^{1 / 2}}$
where integral taken along any pate in closure $(1-1)$,
with branch of square root sit.
(i) $\left(1-3^{2}\right)^{1 / 2}$ nolo in H;
(ii) $\left(1-5^{2}\right)^{1 / 2}>0$ for $-1<3<1$.

- Singular points $=S= \pm 1$ and

$$
\int_{0}^{z} \frac{d \xi}{(1-\zeta)^{1 / 2}}=\int_{0}^{z} \frac{d \xi}{(1+3)^{1 / 2}(1-\xi)^{1 / 2}} \text { is iutgrable! }
$$

- Far $z=x \in(-1,1)$,
take path $=$ lime segment from 0 to x on \mathbb{R}-axis,

$$
\int_{0}^{x} \frac{d \xi}{\left(1-\zeta^{2}\right)^{1 / 2}}=\sin ^{-1} x
$$

with principal branch $\left|\sin ^{-1} x\right|<\frac{\pi}{2}$
Taking limits, we see that

$$
\int_{0}^{ \pm 1} \frac{d \zeta}{\left(1-\zeta^{2}\right)^{1 / 2}}= \pm \frac{\pi}{2}
$$

- Fr $\zeta>1$,

$$
\left\{\begin{array}{l}
\left|\left(1-\zeta^{2}\right)^{1 / 2}\right|=\left(\zeta^{2}-1\right)^{1 / 2} \\
\operatorname{crog}\left(1-\zeta^{2}\right)^{1 / 2}=-\frac{\pi}{2}
\end{array}\right.
$$

according to the choose of the branch
(see figure above)

$$
\Rightarrow\left(1-\zeta^{2}\right)^{1 / 2}=-i\left(\zeta^{2}-1\right)^{1 / 2}
$$

$$
\Rightarrow F_{G} x>1 \text {, }
$$

$$
\begin{aligned}
f(x) & =\int_{0}^{x} \frac{d \zeta}{\left(1-\zeta^{2}\right)^{1 / 2}}=\int_{0}^{1} \frac{d \zeta}{\left(1-\zeta^{2}\right)^{1 / 2}}+\int_{1}^{x} \frac{d \zeta}{\left(1-\zeta^{2}\right)^{1 / 2}} \\
& =\frac{\pi}{2}+\int_{1}^{x} \frac{d \zeta}{-i\left(\zeta^{2}-1\right)^{1 / 2}} \\
& =\frac{\pi}{2}+i \int_{1}^{x} \frac{d \zeta}{\left(\zeta^{2}-1\right)^{1 / 2}} \\
& =\frac{\pi}{2}+i \operatorname{ch}^{-1} x \quad(c h=\cosh)
\end{aligned}
$$

Similarly for $x<-1 .(E x!) \quad\left(f(x)=-\frac{\pi}{2}+i \operatorname{ch}^{-1}|x|\right)$
Hence $f(z)$ maps the boundary \mathbb{R}-lime to

- In fact, $\quad f(z)=\sin ^{-1} z \quad(E x!)$
(Refer to $\operatorname{Eg} 8$ of section 1)
$\therefore f$ maps IH confamally onto the half-infaite strip as in the figure.

Eg 3 Consider

$$
f(z)=\int_{0}^{z} \frac{d \zeta}{\left[\left(1-\zeta^{2}\right)\left(1-k^{2} \zeta^{2}\right)\right]^{1 / 2}}, \quad z \in H \mid
$$

where - $0<k<1, k$ fixed

- the brauch of $\left(1-\xi^{2}\right)^{1 / 2} \&\left(1-k^{2} \xi^{2}\right)^{\frac{1}{2}}$ is chosen sit.
(i) holo. in H ;
(ii) real e positive for $-1<\zeta<1$. and $-\frac{1}{k}<\zeta<\frac{1}{k}$ respectively
- $f(z)$ is an elliptic integral (related to calculating the arc-lengta of an ellipse).
- There are 4 poles along the \mathbb{R}-lime

- Clearly integrable as the exponent is $1 / 2$.
- Far $z=x$ with $-1<x<1$,

$$
f^{\prime}(x)=\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}>0 \quad \text { (by the choice of } \quad \begin{array}{r}
\text { branch })
\end{array}
$$

Together with $f^{\prime}(-z)=f^{\prime}(z)$, we have

$$
f(\pm 1)= \pm \int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}
$$

It is tradictionally denote $k=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}$
Then $f(\pm 1)= \pm K$ and
$f(x)$ increases from - K to K as x increases fran -1 to 1 .

- For $z=x$ with $1<x<1 / k$.

Then along the path from O to x on the \mathbb{R}-lime,
we pass through the pole $z=1$, and the choice of branching of the square root gives

$$
\left[\left(1-\zeta^{2}\right)\left(1-k^{2} \zeta^{2}\right)\right]^{1 / 2}=-i \sqrt{\left(\zeta^{2}-1\right)\left(1-k^{2} \zeta^{2}\right)}
$$

(as in $\operatorname{Eg} 2$)
Hence

$$
\begin{aligned}
f(x) & =\int_{0}^{x} \frac{d \zeta}{\left[\left(1-\zeta^{2}\right)\left(1-k^{2} \zeta^{2}\right)\right]^{1 / 2}} \\
& =\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}+\int_{1}^{x} \frac{d x}{-i \sqrt{\left(x^{2}-1\right)\left(1-k^{2} x^{2}\right)}} \\
& =k+i \int_{1}^{x} \frac{d x}{\sqrt{\left(x^{2}-1\right)\left(1-k^{2} x^{2}\right)}}
\end{aligned}
$$

$\therefore f$ maps the segment $(1,1 / k)$ to the vertical segment k to $K+i K^{\prime}$,
where $\quad k^{\prime}=\int_{1}^{1 / k} \frac{d x}{\sqrt{\left(x^{2}-1\right)\left(1-k^{2} x^{2}\right)}}$
with $f(1)=k$ to $f(1 / k)=k+i k^{\prime}$
as x goes from 1 to $1 / 2$.
So for:

Similarly (Ex!), we have
$f\left(\left[-\frac{1}{k},-1\right]\right)=$ vertical segment with end points
$-K$ and $-K+i K^{\prime}$
sit. $f\left(-\frac{1}{k}\right)=-k+i k^{\prime}$ to $f(-1)=-k$
as x goes from $-1 / k$ to -1 .

- Fer $z=x$ wist $x>1 / k$, we pass taro the pole $1 / k$ too, therefue

$$
\begin{aligned}
& {\left[\left(1-s^{2}\right)\left(1-k^{2} S^{2}\right)\right]^{1 / 2} }=-i\left(-i \sqrt{\left(x^{2}-1\right)\left(k^{2} x^{2}-1\right)}\right) \\
&=-\sqrt{\left(x^{2}-1\right)\left(k^{2} x^{2}-1\right)} \\
& \therefore \quad f^{\prime}(x)=-\frac{1}{\sqrt{\left(x^{2}-1\right)\left(k^{2} x^{2}-1\right)}}<0
\end{aligned}
$$

And $f(x)=K+i K^{\prime}-\int_{1 / k}^{x} \frac{d x}{\sqrt{\left(x^{2}-1\right)\left(k^{2} x^{2}-1\right)}}$
$\therefore f(x)$ belongs to the horizontal line $y=K^{\prime}$

Note that $\int_{1 / k}^{x} \frac{d x}{\sqrt{\left(x^{2}-1\right)\left(k^{2} x^{2}-1\right)}}>0$
and $\int_{1 / k}^{\infty} \frac{d x}{\sqrt{\left(x^{2}-1\right)\left(k^{2} x^{2}-1\right)}}=\int_{1}^{0} \frac{-\frac{1}{k u^{2}} d u}{\sqrt{\left(\frac{1}{k^{2} u^{2}}-1\right)\left(\frac{1}{u^{2}}-1\right)}} \quad\left(x=\frac{1}{k u}\right)$

$$
=\int_{0}^{1} \frac{d u}{\sqrt{\left(1-u^{2}\right)\left(1-k^{2} u^{2}\right)}}=k
$$

$\therefore f$ maps $(1 / k, \infty)$ to the horizontal segment (i $\left.K^{\prime}, K+i K^{\prime}\right)$ (ier reverse direction) and $f\left(\frac{1}{k}\right)=K+i K^{\prime}, \lim _{x \rightarrow+\infty} f(x)=i K^{\prime}$

Similarly f maps $(-\infty,-1 / k)$ to the horizontal sequent $\left(-k+i K^{\prime}, i k^{\prime}\right)$
and $\quad f(-1 / k)=-k+i k^{\prime}, \lim _{x \rightarrow-\infty} f(x)=i k^{\prime}$.

$$
\left(\operatorname{In} f a c t, \lim _{\substack{z \rightarrow \infty \\ z \in H}} f(z)=i K^{\prime}\right)
$$

So we have (on boundary):

(Of course, we haven't shown that $f(I H)=$ interica of the rectangle in the figure, no bijection yet)
4.2 The Schwarz-Christoffel Integral

Def Schwarz-Christoffel Integral:
(5) $\quad S(z)=\int_{0}^{z} \frac{d \zeta}{\left(\zeta-A_{1}\right)^{\beta_{1}} \cdots\left(\zeta-A_{n}\right)^{\beta_{n}}}$
where - $A_{1}<\cdots<A_{n}$ are n distinct points on the real axis;

- $\beta_{k}<1, \forall k=1, \cdots, n$ such that

$$
1<\sum_{k=1}^{n} \beta_{k}
$$

- branch of $\left(x-A_{k}\right)^{\beta_{k}}$ is given as in Remark (ii) below

Remarks: (i) In Eg 1, $\beta=1-\alpha<1$

$$
\begin{aligned}
& \operatorname{Eg} 2, \quad \beta_{1}+\beta_{2}=\frac{1}{2}+\frac{1}{2}=1 \\
& \operatorname{Eg} 3, \quad \beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2>1 .
\end{aligned}
$$

In Egs 182, the vicarage sets are not (bounded) polygons.
(ii) $\left(z-A_{k}\right)^{\beta_{k}}$ is the brauccl defied on

$$
\mathbb{C} \backslash\left\{A_{k}+i y=y \leqslant 0\right\}
$$

sit. $\left(x-A_{k}\right)^{\beta_{k}}>0$ far $z=x>A_{k}$

Then

$$
\left(x-A_{k}\right)^{\beta_{k}}=\left\{\begin{array}{l}
\left(x-A_{k}\right)^{\beta_{k}}, \text { if } z=x>A_{k} \\
\left|x-A_{k}\right|^{\beta_{k}} e^{i \pi \beta_{k}}, \text { if } z=x<A_{k}
\end{array}\right.
$$

(May be a different choose from the examples.)
(iii) Note that

$$
\Omega=\mathbb{C} \backslash \bigcup_{k=1}^{n}\left\{A_{k}+i y=y \leqslant 0\right\}
$$

is sumply-connected,
so $S(z)$ is well-defüed and
 aolomaphic in Ω.
Moreover $\beta_{k}<1 \Rightarrow \frac{1}{\left|\zeta-A_{k}\right|} \beta_{k}$ is integrable near A_{k}. (along any path in Ω to A_{k})
$\therefore \quad S(z)$ extends contunnoresly to the points A_{k} with values $S\left(A_{k}\right)=a_{k}, k=1, \ldots, n$

In particular,
$S(z)$ is contiuruous on $H \cup\{$ real-line $\}$ and colo. in H.
(iv)

$$
\begin{aligned}
\frac{1}{\left|(\zeta-A 1)^{\beta_{1}} \cdots\left(\zeta-A_{n}\right)^{\beta_{n}}\right|} & =\frac{1}{\left|\zeta-A_{1}\right|^{\beta_{1}} \cdots\left|\zeta-A_{n}\right|^{\beta_{n}}} \\
& \leqslant \frac{1}{C|\zeta| \sum_{n=1}^{n} \beta_{k}} \quad \text { for }|\zeta| \text { large }
\end{aligned}
$$

$\therefore \sum_{k=1}^{n} \beta_{k}>1 \Rightarrow$ The ütegral $S(z)$ conveges at ∞.
$\Rightarrow \lim _{r \rightarrow \infty} S\left(r e^{i \theta}\right)=a_{\infty}$ exists and indopendat of $\theta, 0 \leqslant \theta \leqslant \pi$.
(Caacky Thre on

Prop 4.1 Suppose $S(z)$ is given by (5) is the above definition and $a_{1}, \cdots, a_{n} \& a_{\infty}$ are as in the remarks (iii) \& (iv).
(i) If

- $\sum_{k=1}^{n} \beta_{k}=2$, and
- F denotes the polygon whose vertices are given by a_{1}, \cdots, a_{n} (in order),
("polygon" = a closed curve consists of finitely many line segments.)
then
- $a_{\infty}=S(\infty)$ lies on the segment $\left[a_{n}, a_{1}\right]$
- $S(\mathbb{R})=\beta \backslash\left\{a_{\infty}\right\}$
- (Interior) angle at $a_{k}=\alpha_{k} \pi, \alpha_{k}=1-\beta_{k}$.
(ii) If $1<\sum_{k=1}^{n} \beta_{k}<2$, the similar conclusion holds with
- β replaced by the polygon of $\eta+1$ sides with vertices $a_{1}, a_{2}, \cdots a_{n}, a_{\infty}$ (i ́vorder), and
- (Interier) angle at $a_{\infty}=\alpha_{\infty} \pi$,

$$
\alpha_{\infty}=1-\beta_{\infty} \quad \& \quad \beta_{\infty}=2-\sum_{k=1}^{n} \beta_{k} .
$$

Pf Case (i) $\sum_{k=1}^{n} \beta_{k}=2$
If $A_{k}<x<A_{k+1}, k=1, \cdots, n-1$.
Then $S^{\prime}(x)=\frac{1}{\left[\left(x-A_{1}\right)^{\beta_{1}} \ldots\left(x-A_{k}\right)^{\beta_{k}}\right]\left[\left(x-A_{k+1}\right)^{\beta_{k+1}} \cdots\left(x-A_{n}\right)^{\beta_{n}}\right]}$
By the choice of branch of each $x-A_{j}$ in Remark(iis),

$$
\arg \left(x-A_{j}\right)^{\beta_{j}}= \begin{cases}0 & f a r \\ \pi \beta_{j} & \text { fa } j>k\end{cases}
$$

$\therefore \quad \arg S^{\prime}(x)=-\pi \sum_{j>k} \beta_{j}$ which is a constant for $x \in\left(A_{k}, A_{k-1}\right)$.
$\Rightarrow S\left[A_{k}, A_{k+1}\right]$ is a straight lime segment that makes an angle of $-\pi \sum_{j>k} \beta_{j}$ with the x-axis.

Notice that $S(x)=S\left(A_{k}\right)+\int_{A_{k}}^{x} S^{\prime}(y) d y \quad \forall x \in\left(A_{k}, A_{k+1}\right)$. $S(X)$ varies from and point $a_{k}=S\left(A_{k}\right)$ to end point $a_{k+1}=S\left(A_{k+1}\right)$ as x varies from A_{k} to A_{k+1}.

Smilarly

$$
\arg S^{\prime}(x)= \begin{cases}0 & \text { if } x>A_{n} \\ -\pi \sum_{k=1}^{0} \beta_{k}=-2 \pi, & \text { i. } \left.. S^{\prime}(x)>0\right) \\ x<A_{1}\end{cases}
$$

And. $S(x)$ varies from $a_{n}=S\left(A_{n}\right)$ to $a_{\infty}=S\left(A_{\infty}\right)$ as x varies from An to ∞.

- $S(x)$ vonies from a_{∞} to $a_{1}=S\left(A_{1}\right)$ as x varies from $-\infty$ to A_{1}
This shows that $a_{\infty} \in\left[a_{1}, a_{n}\right]$ (angles with $\left.x-a x i s\right)$
This proves $S(\mathbb{R})=\boldsymbol{N}\left\{a_{\infty}\right\}$.
Note that

\therefore Interim angle at $a_{k}=\pi-\left(\pi \beta_{k}\right)=\alpha_{k} \pi$.
Case (Il) $1<\sum_{k=1}^{n} p_{k}<2$ is similar (Ex!)
Notes: (i) For an arbilitrary choice of $n, A_{1}, \cdots, A_{n} ; \beta_{1}, \cdots, \beta_{n}$, the "polygon" Fin Prop 41 may not be simple. The following could happen:

(ii) Even $\beta=\partial P, P$ simply-connected region, Prop 4.1 hasn't shown that $S=H H \rightarrow P$ is conformal. (See subsection 4.4 below)

