
 

54 Conformal Mappings onto Polygons

Explicit formulaof conformal napping from 1H to polygons

41 Some examples

Egl Recall fiz z is a conformalmap from

IH to the sector z oc angz cat OCds 2

Eg2 of section1 page 210 on theTextbook
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take path line segmentfrom 0 to x on IR axis
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Similarly for Xe l Ex text Eti chin

Hence f maps the boundary IR late to
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Refer to Egs ofsection 1
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fit is an elliptic integral related to calculating the

arc length of an ellipse
There are 4 poles along the IR line
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we pass through the pole 7 1 and the
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Similarly Ex we have
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4.2 The Schwarz Christoffel Integral

Def Schwarz Christoffel Integral
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Prop4.1 Suppose SA is givenby 5 is the abovedefinition

and al an as are as in the remarksdis civ
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And Six varies from an Stan to an SCAD

as X varies from An to a
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dis Even P OP Psimplyconnectedregion Prop4.1hasn'tshown

that S 1H P is conformal Seesubsection4.4below


