Explicit description of Aut(IH)

$$\frac{Thm 2.4}{f(z)} = \frac{az+b}{cz+d} \qquad fn some a,b,c,d \in \mathbb{R}$$

$$x \quad ad-bc = 1. (70 \text{ suff.})$$

$$\frac{Pf of Thm 2.4}{(\Leftarrow)}$$

$$(\Leftarrow) ad-bc = 1 \Rightarrow (a,b), (c,d) are linearly independent
(in particular C,d can't be 0 simultaneously)
$$\therefore f(z) = \frac{az+b}{cz+d} is well-defined (and non-constant)$$

$$c, d \in \mathbb{R} \Rightarrow f is hold in H1.$$
Now $f(x+iy) = \frac{a(x+iy)+b}{c(x+iy)+d} = \frac{(ax+b)+iay}{(cx+d)+icy}$

$$= \frac{[(ax+b)+iay][(cx+d)-icy]}{(cx+d)^2+c^2y^2}$$

$$ay(cx+d) = cy(ax+b), (ad-bc)y$$$$

$$\Rightarrow \operatorname{Im} f(z) = \frac{\operatorname{ag}(CX+d) - Cy(aX+b)}{(CX+d)^2 + C^2y^2} = \frac{(ad-bc)y}{|Cz+d|^2}$$

$$= \frac{4}{|CZ+td|^2} > 0 \quad \forall y > 0$$

$$\therefore \quad f = |H| \longrightarrow |H| .$$

Observe that $g(Z) = \frac{dZ - b}{-(Z+a)}$ has the same form
will app (Crients of the back of the same form

-:
$$g$$
 is well-defined, hold in H and $g=1H \rightarrow 1H$.

Straight forward calculation : $f \circ g(z) = \frac{\alpha \left(\frac{dz-b}{-Cz+a}\right)+b}{c \left(\frac{dz-b}{-Cz+a}\right)+d} = \frac{\alpha(dz-b)+b(-Cz+a)}{c(dz-b)+d(-Cz+a)}$ $= \frac{(ad-bc)z}{(ad-bc)} = z$

Similarly
$$g \circ f(z) = z$$
,
 $- g = s^{-1}$ and hence $s \in Aut(H)$.

(=>) If fe Aut(IH), then
$$\beta = f(i) \in H$$
.
If $\beta = u + iv$, $u, v \in \mathbb{R}$, $v > 0$.
Then $\psi(z) = \frac{z - u}{v} = \frac{1}{\sqrt{v}} \frac{z + (-\frac{u}{\sqrt{v}})}{0 \cdot z + \sqrt{v}} \in Aut(IH)$
as $\frac{1}{\sqrt{v}} \cdot \sqrt{v} - (-\frac{u}{\sqrt{v}}) \cdot 0 = 1$.

And $\Psi(\beta) = \frac{(\chi + \psi) - u}{1 - \mu} = i$ & Reme $\Psi'(i) = \beta$ (msider g=foy e Aut(IH). Then $q(i) = f \circ \psi(i) = f(\beta) = i$. $\Rightarrow \overline{\Gamma}(g) = F \circ q \circ F^{-1} \in Aut(\mathbb{D}), \text{ where } F(z) = \frac{\overline{1-z}}{\overline{1+z}}$ satisfies $\Gamma^{-1}(q)(o) = F \circ g \circ F^{-1}(o) = F \circ g(i) = F(i) = D$ Schwarz Lemma $\Rightarrow \Gamma^{(q)(z)} = e^{i 2\theta} z \quad for some <math>\theta \in \mathbb{R}$ $\Rightarrow \quad g(z) = F' \circ \Gamma'(g) \circ F(z) = F' \left(e^{i 2 \Theta} F(z) \right)$ $= \int_{-\infty}^{\infty} \frac{|-e^{i2\theta}\left(\frac{\lambda-z}{\lambda+z}\right)}{|+e^{i2\theta}\left(\frac{\lambda-z}{\lambda+z}\right)}$ $= \tilde{\lambda} \frac{(|+e^{12\theta}) \neq \tilde{\chi}(|-e^{\tilde{\lambda}\theta})}{(|-e^{\tilde{\lambda}\theta}| \neq \tilde{\chi}(|+e^{12\theta}))}$ $= \overline{\lambda} \frac{(e^{i\theta} + e^{i\theta}) \overline{\chi} - \overline{\lambda}(e^{i\theta} - e^{-i\theta})}{-(e^{i\theta} - e^{-i\theta}) \overline{\chi} + \overline{\lambda}(e^{i\theta} + e^{-i\theta})}$ $\Rightarrow \int \circ \psi'(z) = \frac{(\omega \theta \cdot z + \Delta \tilde{\omega} \theta)}{-\Delta \tilde{\omega} \theta \cdot z + (\omega \theta)}$ $f(z) = \frac{(2 - 4)}{2} + Ai \theta$

$$-\lambda \mathbf{i} \theta \cdot (\frac{z-u}{v}) + c \theta \theta$$

$$= \frac{\frac{(200)}{\sqrt{5}} \cdot Z + (-1000) + \sqrt{2} \cdot \frac{(1000)}{\sqrt{5}}}{\sqrt{5}} - \frac{A \hat{u} \theta}{\sqrt{5}} \cdot Z + \frac{(1000)}{\sqrt{5}} + \frac{(1000)}{\sqrt{5}}$$

<u>Remark</u>: The proof in the Textbook uses the following relationship between fractional linear transformations and 2×2 matrixes.

$$f_{M}(z) = \frac{az+b}{cz+d} \iff M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Note that

(i)
$$f_{I} = Id$$
, where $I = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
(ii) $f_{M_{2}} = f_{M_{1}M_{2}}$
Pf: $\frac{a_{1}(\frac{a_{2}z+b_{2}}{c_{z}z+d_{z}})+b_{1}}{C_{1}(\frac{a_{2}z+b_{2}}{c_{z}z+d_{z}})+d_{1}} = \frac{a_{1}(a_{2}z+b_{2})+b_{1}(c_{2}z+d_{2})}{c_{1}(a_{2}z+b_{2})+d_{1}(c_{z}z+d_{z})}$
 $= \frac{(a_{1}a_{2}+b_{1}(c_{2})z+(a_{1}b_{2}+b_{1}d_{2})}{(c_{1}a_{2}+d_{1}c_{2})z+(c_{1}b_{2}+d_{1}d_{2})}$

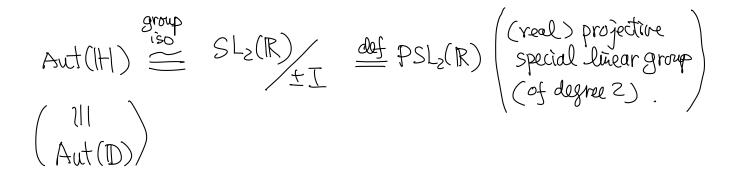
 $(\text{provided } (C_1, d_1) \neq 0 \neq (C_2, d_2) \neq 0)$

٠

(iii) By (i)
$$\approx$$
 (ii), $(f_{M})' = x_{u}t_{s} \iff M' = x_{u}t_{s}$
and $(f_{M})'' = f_{(M'')}$

(iv) However,
$$f_{(kM)} = f_M$$
, $\forall k \in \mathbb{C} \setminus \{0\}$)
(In fact $f_{(kM)} = f_M$, $\forall k \in \mathbb{C} \setminus \{0\}$)

For the purpose of proving Thm2.4, the Textbook considered $SL_2(IR) = \{M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\} = a, b, c, d \in IR \ e \ det(H) = ad - bc = 1 \}$ (real) <u>Special linear group</u> (of degree 2) and Thm2.4 can be written as



3.1 <u>Necessary Conditions and Statement of the Theorem</u> <u>The Problem</u>: determine conditions on an (nonempty) open set *IZ* that <u>guarantee</u> the <u>existence</u> of <u>conformal</u> map F: *IZ* → D.
(Then for *IZ* satisfying these conditions, Dirichlet problem in *IZ* is solvable.)

Necessary conditions

$$\frac{\text{Thm 3.1}(\underline{\text{Riemann Mapping Theorem})}{\text{Suppre region Ω is proper and Simply-connected.}$$

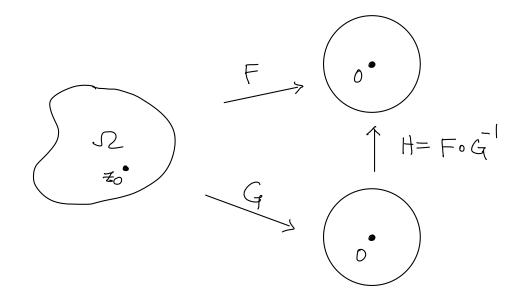
$$\frac{\text{Then } \forall z_0 \in \mathcal{I}, \exists c_1 \underline{\text{unigue conformal map}}{F = \Omega \Rightarrow D} \quad \text{such that } F(z_0) = 0 \text{ and } F(z_0) > 0.$$

$$\frac{1}{This nears F(z_0) + R}$$

$$\frac{1}{This nears F(z_0) - 0}.$$

Cor3.2 Any two proper simply connected regions in C are conformally equivalent.

Proof of uniqueness of Thm 3.1.



Suppose that
$$F : J \ge D$$
, $G : J \ge D$ are carformed
and satisfying $\begin{cases} F(z_0) = G(z_0) = 0 \\ F(z_0) > 0 \\ F(z_0) > 0 \\ F(z_0) > 0 \\ G(z_0) > 0 \\ F(z_0) = 0 \\ F(z_0) \\ F(z_0) = 0 \\ F(z_0) \\ F(z_0)$

In metric space setting of family of continuous functions,
the properties (1) and (2) are independent. However,
for family of the lowerphic functions, (1)
$$\Rightarrow$$
 (2), thanks
to the Cauchy Integral Formula:

Thm 3.3 Suppose Fies a family of tholomorphic functions on
$$\Omega$$

that is uniformly bounded on compact subsets of Ω .
Then (is Fies equicantinuous on every compact subset of Ω .
(ii) F is a normal family.

$$\frac{Pfof(i)}{Let \ K \subset JZ \ be \ compact.}$$
Then $\exists t > 0$ such that $\forall z \in K$, $D_{3r}(z) \subset JZ$
 $(o_{1}r < \frac{1}{2} \operatorname{dist}(k, \partial JZ))$
If $z, w \in K$ and $|z - w| < r$.
Let $\forall = \partial D_{2r}(w)$
Then $\operatorname{Cauchy's}$ integral formula
 $\Rightarrow \quad f(z) - f(w) = \frac{1}{2\pi i} \int_{S} f(z) \left[\frac{1}{5-z} - \frac{1}{5-w} \right] dz$

$$\Rightarrow |f(z) - f(w)| \leq \frac{1}{2\pi} \int_{Y} |f(z)| \left| \frac{1}{z-z} - \frac{1}{z-w} \right| |dz|$$

$$= \frac{1}{2\pi} \int_{Y} |f(z)| \frac{|z-w|}{|z-z||z-w|} |dz|$$

$$\leq \frac{1}{2\pi} \int_{Y} |f(z)| \frac{|z-w|}{y^2} |dz|$$
By assumption, $\exists B>0 \ s.t. |f(z)| \leq B, \ \forall z \in \Omega \notin f(z)$

we have
$$|f(z) - f(w)| \leq \frac{B(z - w)}{F^2} \cdot \frac{1}{2\pi} \cdot 2\pi (zr)$$

$$= \frac{zB}{F} (z - w)$$

 $\forall z, w \in K, (z - w) < r \notin \forall f \in J.$

To prove (i), we need the following

Lamma 3.4 Any open set
$$\mathcal{I}(CC)$$
 has a compact exhaustion

Recall :

A compact exhaustion (single called exhaustion in the Textbook)
of
$$\Sigma$$
 is a sequence $1 \text{K}_{e} \sum_{l=1}^{\infty} of \text{ compact subsets of } \Sigma$
such that

(i)
$$K_{\ell} \subset int(K_{\ell+1}) \quad \forall \ \ell=1,2,3,...$$

(ii) $\forall \text{ compact subset } K \text{ of } \mathcal{N}, \exists K_{\ell} \text{ such that}$
 $K \subset K_{\ell}.$
Ju particular, $\mathcal{N} = \bigcup_{\ell=1}^{\infty} K_{\ell}.$

Pf of (ii) (of Thm 33) Let (fn 5n=, CF be a sequence. Let K C D be compact. Then by (i), Ifn 5n=, is uniformly bounded and equicantinions on K. Arzela-Ascoli Theorem (on the metric space ((K, dos)) (review MATH=2060)

Then
$$\frac{1}{3n} \Rightarrow \frac{1}{3}$$
 while $13 - \overline{z}_{21} = \varepsilon$
and there $\frac{1}{2\pi i} \int \frac{3n(5)}{3n(5)} ds \rightarrow \frac{1}{2\pi i} \int \frac{3(3)}{3(5)} ds \ge 1$
 $15 - \overline{z}_{21} = \varepsilon$
This is a contradiction as g_n thas no zero in $15 - \overline{z}_{21} = \varepsilon$
 $\Rightarrow \frac{1}{2\pi i} \int \frac{3n(5)}{9n(5)} ds = 0$, $\forall n$,
 $\cdot \cdot g = 0 \Rightarrow f(\overline{z}) = f(\overline{z}_{1})$ a constant $\forall \overline{z} \in \Omega$

Remark: The congument in the proof of Prop3.5 gives the following
 $\frac{1}{3n} \frac{1}{3n} \frac{1}$

And clearly Hurwitz Thre => Prop3.5.

Step 1 For a proper and simply-connected region
$$\Omega$$
,
and $z_0 \in \Omega$, \exists conformal
 $f = \Omega \rightarrow f(\Omega) \subset D$ st. $f(z_0) = 0 \approx f'(z_0) > 0$

Then
$$h(z) = \frac{r}{g(z) - (g(w) + zti)}$$
 is Rolo. injective

and
$$|f_{1}(z)| = \frac{r}{|g(z) - (g(w) + 2\pi i)|} < \frac{r}{r} = 1$$

 $\therefore f_{1}: J \rightarrow f_{1}(J) \subset D$ confirmed
Finally, $f(z) = e^{i\Theta} \frac{f_{1}(z_{0}) - f_{1}(z_{0})}{1 - f_{1}(z_{0})} = e^{i\Theta} Y_{f_{1}(z_{0})} \circ f_{1}(z)$
(where Y_{α} as in subjection $z, 1 \neq \Theta \in \mathbb{R}$ to be chosen)
is tholo. injective, $f(J) \subset D$, and $f(z_{0}) = 0$.
Furthermore $f'(z_{0}) = e^{i\Theta} Y_{g(z_{0})}(f_{1}(z_{0})) f_{1}(z_{0})$.
Hence if $\Theta = -\arg(Y_{g(z_{0})}(f_{1}(z_{0})) f_{1}(z_{0}))$,
then $f'(z_{0}) > 0$.

Step 2: The proof can be reduced to the case that

$$SZ$$
 is a sumply-connected region in D with $Z_0 = 0 \in IZ$.

If Riemann Mapping Then Holds in the case win step 2,
then
$$\exists$$
 confirmed $f_i: f(R) \Rightarrow D$ confirmed,
 $f_i(0) = 0 & f_i(0) > 0$,
where f is given in Step 1.
Then $F = f_i \circ f: T \Rightarrow D$ is confirmed

and
$$F(z_0) = f_1(f(z_0)) = f_1(0) = 0$$
.
 $F'(z_0) = f'_1(0) + f'(z_0) > 0$

$$\frac{\text{Step3}}{\text{Step3}} : \text{For suiply-connected region } \mathcal{I} \subset \mathbb{D} \text{ cartaining 0}, \\ \exists F \in \mathcal{J} = \{f: \mathcal{I} \rightarrow \mathbb{D} : \mathcal{Aolo}, \text{ injective } f(0)=0\} \\ \text{s.t.} \qquad |F(0)| = \sup_{f \in \mathcal{J}} |f(0)| \\ f \in \mathcal{J}}$$

$$\begin{array}{rcl} & f: \Omega^{CD} \rightarrow D : \forall t \geqslant \xi \in \mathcal{F} \\ & \therefore & \mathcal{F} \neq \emptyset \end{array} \\ & \text{This also implies } S = \sup_{\substack{f \in \mathcal{F}}} |f'(0)| \geq 1 \end{array} \\ & \text{On the other hand, by Cauchy inequality (cor 4.3 in ch 2)} \\ & S = \sup_{f \in \mathcal{F}} |f'(0)| < \infty \qquad \left(\operatorname{suite} f \in \mathcal{F} \Rightarrow |f| \leq 1 \right) \\ & \text{Hence } \exists f_{n} \in \mathcal{F} \text{ such that} \\ & (f_{n}(0)| \rightarrow s \quad as \quad n \Rightarrow \infty \end{array} \end{array}$$

By Montel's Thearen (Thm 3.3), F is normal. (as F is uniformly bounded) ∋ ∃ subseq (let call it for cogain) conveyes miformly on every compact subset to a Rolo f on J. Then f(0) = 0 and |f'(0)| = S $S \ge | \Longrightarrow f \ddagger constant$. Hence $Prop 3.5 \Longrightarrow f$ is injective, as fin are injective. $.: f \in S$. This proves step 3. *