(1) Let F holonaphic on $\{z: \operatorname{Re} z>0\}$ and contunnoes up to the bouddary (the inaguary axis). Supper

$$
|F(i y)| \leqslant 1, \quad \forall y \in \mathbb{R}
$$

and $|F(z)| \leqslant c_{1} e^{c_{2}|z|^{\gamma}}$ fa sure $r<1$, and, $c_{1}, c_{2}>0$.
Prove that $|F(z)| \leqslant 1 \quad \forall z \in\{z: \operatorname{Re} z \geqslant 0\}$.

Sofn: Take α s.t. $\gamma<\alpha<1$ and cousider $\forall \varepsilon>0$

$$
G_{\varepsilon}(z)=F(z) e^{-\varepsilon z^{\alpha}} \quad \text { useig priciple bracch of } \log \text {. }
$$

Then $\left|G_{\varepsilon}(z)\right|=|F(z)| e^{-\varepsilon R_{e} z^{\alpha}}=\mathbb{F} \mid e^{-\varepsilon r^{\alpha} \cos \alpha \theta}$ where $z=r e^{i \theta},-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}$
Then $-\alpha \frac{\pi}{2} \leqslant \alpha \theta \leqslant \alpha \frac{\pi}{2}$ \& $\alpha<1$

$$
\begin{aligned}
& \Rightarrow \exists \delta>0 \text { s.t. } \cos \alpha \theta \geq \delta>0 \quad \forall \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
& \Rightarrow \quad\left|G_{\varepsilon}(z)\right| \leqslant|F| e^{-\varepsilon \delta \gamma^{\alpha}} \\
& \leqslant C e^{c r^{\gamma}-\varepsilon \delta r^{\alpha}} \\
&=C e^{\left(c-\varepsilon \delta r^{\alpha-\gamma}\right) r^{\gamma}}
\end{aligned}
$$

sie $\alpha>\gamma, \quad c-\varepsilon \delta r^{\alpha-\gamma}<0$ fa sufficieatly logge r
Hence $\left|G_{\varepsilon}(z)\right|$ is bouded and $\rightarrow 0$ as $|z| \rightarrow+\infty$.
$\Rightarrow \max \left|G_{\varepsilon}(z)\right|$ attained in a cmupoct region
Says $\quad\{\operatorname{Re} z \geqslant 0\} \cap\{|z| \leqslant R\}$
By maxioucu puiciple, it happeus on $\{\operatorname{Re} z=0\}$ or $\{(z)=R\}$ If it is on $\{|z|=R\}$, it will be an interia max \& upples

$$
\begin{aligned}
& G \varepsilon(z) \equiv \text { const. \& heuce }=O\left(\text { as } G_{\varepsilon} \rightarrow 0 \text { ass }(z \mid \rightarrow \infty)\right. \\
& \Rightarrow \quad F(z) \equiv 0 . \quad \therefore|F(z)| \leqslant 1 .
\end{aligned}
$$

If it happens at $i y_{0} \in\{\operatorname{Re} z=0\}$, then $\underset{n}{\forall z} \quad\left|G_{\varepsilon}(z)\right| \leqslant\left|F\left(i y_{0}\right) e^{\left.-\varepsilon(e)_{0}\right)^{\alpha}}\right|$

$$
\begin{aligned}
& \{R z \geq 0\} \quad \leqslant 1 \cdot e^{-\varepsilon \operatorname{Re}(i)_{0}^{\alpha^{\alpha}}}=e^{-\varepsilon \left\lvert\, y_{0} \cos \frac{\alpha \pi}{2}\right.} \\
& \therefore \quad|F(z)| \leqslant e^{\varepsilon \operatorname{Re}\left(z^{\alpha}\right)} e^{-\varepsilon \left\lvert\, y_{0} \cos \frac{\alpha \pi}{2}\right.} \quad \forall z \in\{\operatorname{Re} z \geq 0\}
\end{aligned}
$$

Sine $\varepsilon>0$ is aubitray, we har $|f(z)| \leq 1$.
(2)(a) Let $\left.a_{n} \in \mathbb{C} \backslash 30\right\}$ be a seq. of complex number such that $\lim _{n \rightarrow \infty} a_{n}=\infty$ and $\sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|^{\varepsilon}}<\infty, \forall \varepsilon>0$

Shows that the infaite product

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right)
$$

defines an entire function of füite nader.
What is the order if of f ?
(b) Let $g(z)=e^{z} f(z)$. Find the adder ρ_{g} and the Hadamard factaization of g.

Shula) $\forall R>0$, if $|z|<R$, then

$$
\sum_{n=1}^{\infty}\left|\frac{z}{a_{n}}\right|=|z| \sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|} \leqslant R \cdot \sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|} \quad \text { convergent }
$$

$\therefore f(z)$ defiños an entire function with zeros $\left\{a_{n}\right\}$
Now $\forall \varepsilon>0$,

$$
\begin{aligned}
|f(z)|= & \lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left|1-\frac{z}{a_{n}}\right| \leqslant \lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left(1+\frac{|z|}{\left|a_{n}\right|}\right) \\
& \leqslant \lim _{N \rightarrow \infty} e^{\sum_{n=1}^{N} \log \left(1+\frac{|z|}{\left|a_{n}\right|}\right)}
\end{aligned}
$$

$\Rightarrow \forall|z| \geqslant 1$,

$$
\begin{aligned}
|f(z)| & \leqslant \lim _{N \rightarrow \infty} e^{\sum_{n=1}^{N} C_{\varepsilon}\left(\frac{|z|}{\left|a_{n}\right|}\right)^{\varepsilon}} \text { fa sove } c_{\varepsilon}>0 \\
& \leqslant e^{C_{\varepsilon}\left(\sum_{n=1}^{\infty} \frac{1}{\left.\left|a_{n}\right|^{\varepsilon}\right)|z|^{\varepsilon}} \quad \text { as } \sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|^{\varepsilon}}<\infty\right.}
\end{aligned}
$$

$\therefore f$ has füite growta of ader $\leqslant \varepsilon, \forall \varepsilon>0$ Hence $p_{f}=0$.
(b)

$$
\begin{aligned}
& g(z)=e^{z} f(z) \\
& \Rightarrow \quad \forall \varepsilon>0, \\
& \\
& |g(z)| \leqslant e^{|z|} e^{c_{\varepsilon}^{\prime}|z|^{\varepsilon}} \quad \quad\left(c_{\varepsilon}^{\prime}=c_{\varepsilon} \sum_{n=1}^{\infty} \frac{1}{\left|a_{u}\right| \varepsilon}>0\right) \\
& \\
& \leqslant e^{C_{\varepsilon}^{\prime \prime}|z| \quad \text { fu sure } c_{\varepsilon}^{\prime \prime}, \text { provided }|z| \geqslant 1} \begin{array}{l}
\Rightarrow \quad \rho_{g} \leqslant 1 .
\end{array} .
\end{aligned}
$$

If $\rho_{g}<1$, then $0 \leqslant \rho_{g}<0+1$.
Hadamord Thm \Rightarrow

$$
\left(e^{z} f(z)=\right) g(z)=e^{b} \prod_{n=1}^{b}\left(1-\frac{z}{a_{n}}\right)=e^{b} f(z)
$$

fa saue constant b as $\left\{a_{n}\right\}$ are all zeroes of g which is a coutradiction.

$$
\therefore \quad \rho_{g}=1 .
$$

And Hadamand factorization of g nest have the fam

$$
\begin{aligned}
g(z) & =e^{a z+b} \prod_{n=1}^{\infty} E_{1}\left(\frac{z}{a_{n}}\right) \\
& =e^{a z+b} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) e^{\frac{z}{a_{n}}} \\
\therefore \quad g(z) & =e^{a z+b} \lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left(1-\frac{z}{a_{n}}\right) e^{\frac{z}{a_{n}}} \\
& =e^{a z+b} \lim _{N \rightarrow \infty}\left[\prod_{n=1}^{N}\left(1-\frac{z}{a_{n}}\right)\right] e^{\left(\sum_{n=1} \frac{1}{a_{n}}\right) z}
\end{aligned}
$$

AS $\prod_{n=1}^{N}\left(1-\frac{z}{a_{n}}\right) \& e^{\left(\sum_{n=1}^{N} \frac{1}{a_{n}}\right) z}$ converge locally mifonnuly and absolutely $\left(\sin c e \sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|}<\infty\right)$,

$$
\begin{aligned}
g(z) & =e^{a z+b}\left[\prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right)\right] e^{\left(\sum_{n=1}^{\infty} \frac{1}{a_{n}}\right) z} \\
& =e^{\left(a+\sum_{n=1}^{\infty} \frac{1}{a_{n}}\right) z+b} f(z) \\
\therefore \quad b & =0 \quad \text { and } \quad a+\sum_{n=1}^{\infty} \frac{1}{a_{n}}=1
\end{aligned}
$$

Hence $\quad y(z)=e^{\left(1-\sum_{n=1}^{\infty} \frac{1}{a_{n}}\right) z} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) e^{\frac{z}{a_{n}}}$
(3) Recall $\frac{1}{\Gamma(s)}=e^{\gamma s} s \prod\left(1+\frac{s}{n}\right) e^{-\frac{s}{n}}$, where $\gamma=$ Euler's coustact
(a) Shw that $\Gamma(s)=\lim _{n \rightarrow \infty} \frac{n^{s} n!}{s(s+1) \cdots(s+n)}$ fu $s \neq 0,-1,-2, \ldots$
(b) Let $f:(0, \infty) \rightarrow(0, \infty)$ be a paisine function salisfying
(i) $\log f(x)$ is concex on $(0, \infty)$
(ii) $f(x+1)=x f(x), \forall x>0$
(iii) $f(1)=1$.

Shrow that $f(x)=\Gamma(x), \forall x>0$.
[Hint: Apply comweribs to $n<n+x \leqslant n+1$ \& $n-1<n<n+x$ to get

$$
\left.\begin{array}{l}
n<n+x \leq n+1 \& n-1<n<n+x \\
(n-1)^{x}(n-1)!\leqslant f(n+x) \leqslant n^{x}(n-1)!\text { fo } x \in(0,1]
\end{array}\right]
$$

Pf of (a) By $\frac{1}{\Gamma(s)}=e^{r s} S \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-\frac{s}{n}}$

$$
\begin{aligned}
& =e^{r s} S \lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(1+\frac{s}{k}\right) e^{-\frac{s}{k}} \\
& =e^{r s} s \lim _{n \rightarrow \infty} \prod_{k=1}^{n} \frac{s+k}{k} \cdot e^{-\frac{s}{k}} \\
& =\lim _{n \rightarrow \infty} e^{r s} \cdot s \frac{(s+1)(s+2) \cdots(s+n)}{n!} e^{-s} e^{-\frac{s}{2}} \cdots e^{-\frac{s}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{s(s+1) \cdots(s+n)}{n!} \cdot e^{r s-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) s}
\end{aligned}
$$

Using $\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)$, we have

$$
\begin{align*}
\frac{1}{\Gamma(s)} & =\lim _{n \rightarrow \infty} \frac{s(s+1) \cdots(s+n)}{n!} e^{\left[r-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\lg n\right)\right] s} e^{-s \log n} \\
& =\lim _{n \rightarrow \infty}\left[\frac{s(s+1) \cdots(s+n)}{n!n^{s}} e^{\left[r-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)\right] s}\right] \\
& =\lim _{n \rightarrow \infty} \frac{s(s+1) \cdots(s+n)}{n!n^{s}}
\end{align*}
$$

(b) $\quad B y$ (ii), $f(x+n)=x(x+1) \cdots(x+n-1) f(x) \quad \forall n=1,2,3 \cdots$
same as $\Gamma(x+n)=x(x+1) \cdots(x+n-1) \Gamma(x)$
Hence, we only need to show $f(x)=\Gamma(x)$ fer $x \in(0,1]$.

$$
\forall n=1,2,3, \cdots \quad n \leqslant n+x \leqslant n+1 \quad f_{a} x \in(0,1]
$$

Note that $n+x=(1-x) n+x(n+1)$
\therefore convexity $\Rightarrow \log f(n+x) \leqslant(1-x)$ bog $f(n)+x \log f(n+1)$
Note that (ii) s(iii) $\Rightarrow \forall n \geqslant 2$,

$$
\begin{align*}
f(n) & =(n-1) f(n-1)=\cdots=(n-1)!f(1)=(n-1)! \\
\therefore \quad \log f(n+x) & \leqslant x(\log n!-\log (n-1)!)+\log (n-1)! \\
& =x \log n+\log (n-1)! \\
\Rightarrow \quad f(n+x) & \leqslant n^{x}(n-1)! \tag{1}
\end{align*}
$$

Sinilarly fax $x \in[0,1], \quad n-1<n<n+x$ and note that $n=\left(1-\frac{1}{1+x}\right)(n-1)+\frac{1}{1+x}(n+x)$

$$
\begin{aligned}
& \Rightarrow \quad \log f(n) \leqslant\left(1-\frac{1}{1+x}\right) \log f(n-1)+\frac{1}{1+x} \log f(n+x) \\
& \Rightarrow \quad \log f(n)-\log f(n-1) \leqslant \frac{1}{1+x}[\log f(n+x)-\log f(n-1)] \\
& \Rightarrow \quad(1+x)[\log f(n)-\log f(n-1)] \leqslant \log f(n+x)-\log f(n-1) \\
& \Rightarrow \quad x[\log f(n)-\log f(n-1)]+\log f(n) \leqslant \log f(n+x) \\
& \Rightarrow \quad x[\log (n-1)!-\log (n-2)!]+\log (n-1)!\leqslant \log f(n+x) \\
& \Rightarrow \quad x \log (n-1)+\log (n-1)!\leqslant \log f(n+x) \\
& \Rightarrow \quad x^{x}(n-1)!\leqslant f(n+x)
\end{aligned}
$$

Byc(ii) \& ìequalities (I) \&(2), we have

$$
\begin{aligned}
\frac{(n-1)^{x}(n-1)!}{x(x+1) \cdots(x+n-1)} \leqslant f(x) & \leqslant \frac{n^{x}(n-1)!}{x(x+1) \cdots(x+n-1)}, \quad \forall n \\
& \leqslant \frac{n^{x} n!}{x(x+) \cdots(x+n)} \cdot \frac{x+n}{n}
\end{aligned}
$$

By part $(\varphi), \quad \lim _{n \rightarrow \infty} \frac{(n-1)^{x}(n-1)!}{x(x+1) \cdots(x+n-1)}=\Gamma(x)$ \& $\lim _{n \rightarrow \infty} \frac{x+n}{n}=1$,
we have $\quad \Pi(x) \leqslant f(x) \leqslant \Gamma(x) \quad \forall x \in(0,1]$.
Hence $f(x)=\Gamma(x), \forall x>0$.

