Eg 7 (Ex) $f(z)=-\frac{1}{2}\left(z+\frac{1}{z}\right)$ maps confamally

$\binom{$ misprint in the textbook concerning the boundary behaviour, }{ confused with $z \mapsto \frac{1}{2}\left(z+\frac{1}{z}\right)}$

Eg 8 $f(z)=\sin z$ maps confanually (Misprint in Textbook, confused $\begin{gathered}\text { dominie and target }\end{gathered}$

Note $f(z)=\sin z=\frac{e^{i z}-e^{-i z}}{2 i}=-\frac{1}{2}\left(\frac{-e^{i z}}{i}+\frac{e^{-i z}}{i}\right)$

$$
=-\frac{1}{2}\left(i e^{i z}+\frac{1}{i e^{i z}}\right)
$$

$\sin z$

1.2 The Dirichlet Problem in a Strip

Dirichlet Problem in the open set Ω consists of solving

$$
\left\{\begin{aligned}
\Delta u & =0 \text { in } \Omega \\
u & =f \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is the Laplacian (operator) $f=$ given (cantunucos) function on $\partial \Omega$.
(ie. Dirichlet Problem = Boundary value Problem fo the Laplace equation)
Known Fact: Solution to Dirichlet Problem in the mit disk (D.
Recall: using polar condinates

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

Let f be a contiuluos function on $\partial \mathbb{D}=S^{\prime}$.
Then f can be represented as a (periodic) function of θ

$$
f(\theta), \quad 0 \leqslant \theta \leqslant 2 \pi .
$$

Then the unique solution to $\left\{\begin{aligned} \Delta u & =0 \text { in } \mathbb{D} \\ u=f & \text { on } \partial D\end{aligned}\right.$

$$
u=f \quad \text { on } \partial D=s^{\prime}
$$

is given by $u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(\theta-\varphi) f(\varphi) d \varphi$
where $P_{r}(\theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}$
(See textbook far reference)

In this section, we illustrate how to use confanal maps and the solution of Dirichlet problem in the unit disc to solve Dirichlet Problem is a more general domain Ω in \mathbb{C}.

Lemma 1.3 $F: U \rightarrow V$ hold. $(U, V$ open $\bar{m} \mathbb{C})$
If $u: V \rightarrow \mathbb{C}$ is harmonic (ie. $\Delta u=0$), then $n \cdot F: U \rightarrow \mathbb{C}$ is harmonic.

If Easy exercise using Chair rule and Cauder-Riemann equation. (Or observing that $¥$ hold. G on U sit. $\operatorname{Re}(T=u$.)

Dirichlet Problem in the strip $\Omega=\{x+i y=x \in \mathbb{R}, 0<y<1\}$

Then boundary $\partial \Omega$ of Ω consists of two components

$$
L_{0}=\{x+i y=y=0\} \& L_{1}=\{x+i y=y=1\}
$$

let $f_{0}=L_{0} \rightarrow \mathbb{R}$ and $f_{1}: L_{1} \rightarrow \mathbb{R}$ be contimans functions (and represented as functions of x only)

$$
\text { We need to ford } u(x, y) \text { such that }\left\{\begin{array}{l}
\Delta u=0 \text { in } \Omega \\
u(x, 0)=f_{0}(x) \\
u(x, 1)=f_{1}(x)
\end{array}\right.
$$

Fr techincal reason, let consider special cases that

$$
\lim _{|x| \rightarrow \infty} f_{0}(x)=\lim _{|x| \rightarrow \infty} f_{1}(x)=0
$$

Step 1: Find a conformal map $F: D \rightarrow \Omega$.
Recall that

$\therefore \quad F(w)=\frac{1}{\pi} \log \left(i \frac{1-w}{1+w}\right)$ maps (D) confamally onto Ω.
Easy calculation \Rightarrow

$$
G(z)=\frac{i-e^{\pi z}}{i+e^{\pi z}}=\Omega \rightarrow \mathbb{D}
$$

is the inverse $\left(G=F^{-1}\right)$

Boundary behaviour: $\varphi:-\pi \rightarrow 0 \leftrightarrow F\left(e^{i \varphi}\right): i+\infty \rightarrow i-\infty$

$$
\varphi: 0 \rightarrow \pi \longleftrightarrow F\left(e^{i \varphi}\right):-\infty \rightarrow+\infty\left(x-a x x_{6}\right)
$$

Define $\tilde{f}: S^{\prime}=\partial \mathbb{D} \rightarrow \mathbb{R}$ by

$$
\hat{f}(\varphi)= \begin{cases}f_{0}\left(F\left(e^{i \varphi}\right)\right), & 0<\varphi<\pi \\ f_{1}\left(F\left(e^{i \varphi}\right)-i\right), & -\pi<\varphi<0 \\ 0, & \varphi=0, \pm \pi\end{cases}
$$

Then by $\lim _{|x| \rightarrow \infty} f_{0}(x)=\lim _{|x| \rightarrow \infty} f_{1}(x)=0, \tilde{f}$ is continuous.
Using the solution to the Dirichlet problem in the unit dice D,

$$
\tilde{u}(w)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(\theta-\varphi) \tilde{f}(\varphi) d \varphi
$$

is a turmonic function in D with boundary value

$$
\left.\tilde{u}\right|_{\partial D}=\tilde{f}
$$

Then Lemma $1.3 \Rightarrow u=\tilde{u} \cdot G: \Omega \rightarrow \mathbb{R}(c \mathbb{C})$
is the solution to the Dirichlet problem in the strip Ω.
More explicitly, we have

$$
\begin{aligned}
& u(x, y)=\frac{\sin \pi y}{2}\left(\int_{-\infty}^{\infty} \frac{f_{0}(x-t)}{\cosh (\pi t)-\cos \pi y} d y+\int_{-\infty}^{\infty} \frac{f_{1}(x-t)}{\cosh (\pi t)+\cos \pi y} d y\right) \\
& (0<y<1)
\end{aligned}
$$

(Details milted sel Ex F \& discussion on page 216 in the Textbook)

