2.1 Proof of the asymptotics for ψ_{1}
(ie. Final step of the Proof of Prune Number Theorem)
Denote $F(s)=\frac{x^{s+1}}{s(s+1)}\left(-\frac{S^{\prime}(s)}{S(s)}\right)$ where x fixed (\& suff. large) Then Prop $2.3 \Rightarrow \forall c>1, \quad \Psi_{1}(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) d s$

Consider the contour
 $(R \rightarrow+\infty)$
where $T \geqslant 3$ and $\delta>0$ is chosen (depending on T) such that $\zeta(s) \neq 0$ along the intour.
This can be done since $\zeta(s) \neq 0 \quad \forall \operatorname{Re}(s) \geqslant 1 \quad($ Th $1.1 \& 1.2)$
By Prop 2.7 (ii) in Ch 6 and Prop 1.6 in Ch 7,

$$
\forall \varepsilon>0, \exists C_{\varepsilon}>0 \text { sit }
$$

$$
\begin{array}{ll}
\left|S^{\prime}(S)\right| \leqslant c_{\varepsilon}|t|^{\varepsilon} \\
1 /|\zeta(s)| \leqslant c_{\varepsilon}|t|^{\varepsilon} & \text { and }
\end{array} \quad(\forall \sigma \geq 1 \&|t| \geq 1)
$$

Hence $\forall \eta>0, \exists A>0$ sit.
(*), $\quad\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right| \leqslant A|t|^{\eta} \quad \forall \sigma \geqslant 1 \&|t| \geqslant 1$
$\Rightarrow F_{G} R(>T)$ sufficiently large, and $S \in[1+i R, C+i R]$ or $[1-i R, C-i R], \quad\binom{$ top and bottom }{ horizontal line segnuacts }

$$
\begin{aligned}
& |F(s)|=\frac{\left|x^{s+1}\right|}{|s(s+1)|}\left|\frac{s^{\prime}(s)}{\zeta(s)}\right| \\
&
\end{aligned} \begin{aligned}
& \leqslant x^{c+1} \cdot \frac{1}{|s(s+1)|}\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right| \leqslant A^{\prime}|t|^{-2+\eta} \quad \text { fuss } \\
& \Rightarrow\left|\int_{C+i R}^{1+i R} F(s) d s\right| \leqslant A^{\prime} R^{-2+\eta}(C-1) \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

$$
\text { forsmee } A^{\prime}>0
$$

$$
\left(A^{\prime} \text { indep. of } s\right)
$$

and $\left|\int_{1-i R}^{C-i R} F(S) d s\right| \leqslant A^{\prime} R^{-2+\eta}(C-1) \rightarrow 0$ as $R \rightarrow \infty$

Letting $R \rightarrow \infty$, Residue famula \Rightarrow

$$
\text { res }_{s=1} F(s)=\frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \omega} F(s) d s-\left[\begin{array}{c}
\frac{1}{2 \pi i}\left(\int_{1+i T}^{1+i \omega}+\int_{1-i \omega}^{1-i T}\right) F(s) d s \\
+\frac{1}{2 \pi i}\left(\int_{1-\delta+i T}^{1+i T}-\int_{1-\delta-i T}^{1-i T}\right) F(s) d s \\
+\frac{1}{2+i} \int_{1-\delta-i T}^{1-\delta+i T} F(s) d s
\end{array}\right]
$$

By Cor 2.6 of ch 6 ,
$S(s)=\frac{1}{s-1}+H(s)$ near $s=1$ with hold $H(s)$.

$$
\Rightarrow \quad-\frac{s^{\prime}(s)}{s(s)}=\frac{1}{s-1}-\frac{H(s)+(s-1) H^{\prime}(s)}{1+(s-1) H(s)}
$$

Whole near $S=1$

$$
\begin{aligned}
& \therefore \quad r_{e s} F(s)=r e s_{s=1}\left[\frac{x^{s+1}}{s(s+1)} \cdot\left(\frac{1}{s-1}-h(s)\right)\right] \\
&=\frac{x^{2}}{2} \\
& \therefore \quad \Psi_{1}(x)=\frac{x^{2}}{2}+\frac{1}{2 \pi i}\left(\int_{1+i T}^{1+i \infty}+\int_{1-i \alpha}^{1-i T}\right) F(s) d s \\
&+\frac{1}{2 \pi i}\left(\int_{1-\delta+i T}^{1+i T}-\int_{1-\delta-i T}^{1-i T}\right) F(s) d s+\frac{1}{2 \pi i} \int_{1-\delta-i T}^{1-\delta+i T} F(s) d s
\end{aligned}
$$

Since we care only the licit as $x \rightarrow+\infty$, we may assure $x \geq 2$ \bar{m} our estimates.
(i)

$$
\begin{aligned}
\mid \int_{1+i T}^{1+i \omega} F(S) d s & \leqslant \int_{T}^{\infty} \frac{\left|x^{2+i t}\right|}{|(1+i t)(2+i t)|}\left|\frac{\zeta^{\prime}(1+i t)}{\zeta(1+i t)}\right| d t \\
& \leqslant x^{2} \cdot \int_{T}^{\infty} \frac{1}{|1+i t||2+i t|} \cdot A\left(\left.t\right|^{1 / 2} d t \quad\left(\text { take } \eta=\frac{1}{2} \dot{m}(t)_{5}\right)\right.
\end{aligned}
$$

Clearly the integral converges and hence
$\forall \varepsilon>0, \quad\left|\frac{1}{2 \pi i} \int_{1+i T}^{1+i r} F(s) d s\right| \leqslant \varepsilon \frac{x^{2}}{2} \quad$ far suff- large T.

Same arguneent. \Rightarrow
$\forall \varepsilon>0, \quad\left|\frac{1}{2 \pi i} \int_{1-i \infty}^{1-i T} F(s) d s\right| \leqslant \varepsilon \frac{x^{2}}{2} \quad$ fa suff- large T.
(ii) $\quad\left|\frac{1}{2 \pi i} \int_{1-\delta+i T}^{1+i T} F(s) d s\right| \leqslant \frac{1}{2 \pi} \int_{1-\delta}^{1} \frac{\left|x^{1+\sigma+i T}\right|}{|\sigma+i T||\sigma+1+i T|}\left|\frac{s^{\prime}(\sigma+i T)}{s(\sigma+i T)}\right| d \sigma$

$$
\begin{aligned}
& \leqslant \frac{1}{2 \pi} \int_{1-\delta}^{1} \frac{x^{1+\sigma}}{T^{2}} A T^{\frac{1}{2}} d \sigma \quad\left(\eta=\frac{1}{2} \dot{m}(x)_{1}\right) \\
&= C_{T}^{\prime} \int_{1-\delta}^{1} x^{1+\sigma} d \sigma=C_{T}^{\prime} S_{1-\delta}^{1} e^{(1+\sigma) \log x} d \sigma \\
&= C_{T}^{\prime}\left[\frac{e^{(1+\sigma) \log x}}{\log x}\right]_{1-\delta}^{1} \leqslant C_{T}^{\prime} \frac{x^{2}}{\log x} \\
& \quad(x \geqslant 2 \Rightarrow \log x \geqslant \lg 2>0)
\end{aligned}
$$

Siusilarly $\left|\frac{1}{2 \pi i} \int_{1-\delta-i T}^{1-i T} F(s) d s\right| \leqslant C_{T}^{\prime} \frac{x^{2}}{\log x} \quad$ for save coust.

$$
C_{T}^{\prime}>0 .
$$

(iii) $\left|\frac{1}{2+i} \int_{1-\delta-i T}^{1-\delta+i T} F(S) d s\right| \leqslant \frac{1}{2 \pi} \int_{-T}^{T} \frac{\left|x^{1+(1-\delta)+i t \mid}\right|}{(1-\delta+i t|2-\delta+i t|}\left|\frac{s^{\prime}(1-\delta+i t)}{s(1-\delta+i t)}\right| d t$

$$
\begin{aligned}
& \leqslant \frac{1}{2 \pi} \int_{-T}^{T} \frac{x^{2-\delta}}{|1-\delta+i t||2-\delta+i t|}\left|\frac{s^{\prime}(1-\delta+i t)}{s(1-\delta+i t)}\right| d t \\
& \leqslant C_{T} x^{2-\delta} \text { far savee const, } C_{T}
\end{aligned}
$$

(dependuing on T, δ and hence dependiog on T as δ is chosen accadiog to T)

Hence (i), (iii) \& (lull) $\rightarrow \forall \varepsilon>0, \exists \delta>0, C_{T} \& C_{T}^{\prime}$ s.t.

$$
\left|\psi_{1}(x)-\frac{x^{2}}{2}\right| \leqslant 2 \varepsilon \frac{x^{2}}{2}+C_{T}^{\prime} \frac{x^{2}}{\log x}+C_{T} x^{2-\delta}
$$

fa sufficiently large T

$$
\Rightarrow\left|\frac{2 \psi_{1}(x)}{x^{2}}-1\right| \leqslant 2 \varepsilon+2 C_{T}^{\prime} \frac{1}{\log x}+2 C_{T} \frac{1}{x^{\delta}}
$$

0 as $x \rightarrow \infty$.
Hence $\left|\frac{2 \psi_{1}(x)}{x^{2}}-1\right| \leqslant 4 \varepsilon \quad$ for sufficiently large x.

$$
\begin{array}{ll}
\Rightarrow & \lim _{x \rightarrow+\infty} \frac{2 \psi_{1}(x)}{x^{2}}=1 \\
\text { i. } \quad & \psi_{1}(x) \sim \frac{x^{2}}{2} \quad \text { as } x \rightarrow \infty .
\end{array}
$$

This completes the proof of the prime number thenem.

Ch 8 Conformal Mappings
s) Conformal Equivalence and Examples

Def. A bijective holomorphic function $f: U \rightarrow V \quad(U, V$ open in $\mathbb{C})$ is called a conformal map or biholomaphism.

- In this case, U and V are said to be conformally equivalent or simply bitolomaphec.

Prop 1.1. If $f: U \rightarrow V$ is holomaphic and Ejective, then

$$
f^{\prime}(z) \neq 0 \quad \forall z \in U
$$

- In particular, $f^{-1}: f(U) \rightarrow U$ is holomorphic (\Rightarrow inverse of confamal map is also holomaphic and hence conformal)

Remarks: - Prop $1.1 \Rightarrow U \& V$ are confomally equivalent

$$
\Leftrightarrow \exists \text { hole } f: U \rightarrow V \text { and foll } g: V \rightarrow U
$$

s.t. $g(f(z))=z \quad \forall z \in U \&$

$$
f(g(w))=w \quad \forall w \in V .
$$

- Sane authors call a holonaphic map $f: U \rightarrow V$ confamal if $f^{\prime}(z) \neq 0, \forall z \in \cup$, not necessary bijective (globally) (In this course, well follow Textbook's convention.)

Pf of Prop 1.1
Supple on the contrary that $f^{\prime}\left(z_{0}\right)=0$ for same $z_{0} \in U$.
Then $f(z)-f\left(z_{0}\right)=a\left(z-z_{0}\right)^{k}+G(z)$ near z_{0}
where $a \neq 0, k \geq 2$ and
G vanishing to under $k+\mid$ at z_{0}. (ie. $\frac{|G(z)|}{\left|z-z_{0}\right|^{k+1}} \leqslant C$ near z_{0})

Consider $w \neq 0$ with $|w|$ sufficiently small
Then

$$
\begin{aligned}
f(z)-\left(f\left(z_{0}\right)+w\right) & =\left[a\left(z-z_{0}\right)^{k}-w\right]+G(z) \\
& =F(z)+G(z)
\end{aligned}
$$

where $F(z)=a\left(z-z_{0}\right)^{k}-w$.
Then - $|F(z)|>|G(z)|$ in a sufficiently small circle centered at z_{0}

- $k \geq 2 \Rightarrow F(z)$ has at least 2 zeros inside that circle.

Rouchés Thu $\Rightarrow f(z)-\left(f\left(z_{0}\right)+w\right)$ has at least 2 zeros there too.
Since f^{\prime} is hold \& hence to is an isolated zero.
We may assume, by choosing a smaller circle, that $f^{\prime}(z) \neq 0 \quad \forall z$ insides the circle except $z=z_{0}$.
\Rightarrow the zeros of $f(z)-\left(f\left(z_{0}\right)+w\right)$ are distinct
$\therefore \quad f$ is not infective near z_{0}.
This proves the $1^{\text {st }}$ statement.

For the $2^{\text {nd }}$ statement, let $g=f^{-1}=f(u) \rightarrow U$
(Open mapping theorem (Thu $4.4, \mathrm{Ch} 3) \Rightarrow$ S is contiuncons)
Suppose that $w_{0} \in f(U)$ and w close to w_{0}, but $\omega \neq w_{0}$.

Then $\exists z \& z_{0} \in U$ sit. $w=f(z)$ \& $w_{0}=f\left(z_{0}\right)$.
Hence

$$
\frac{g(w)-g\left(w_{0}\right)}{w-w_{0}}=\frac{1}{\left(\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right)}
$$

Since $f^{\prime}(\neq 0) \neq 0$, we have

$$
\lim _{w \rightarrow w_{0}} \frac{g(w)-g\left(w_{0}\right)}{w-w_{0}}=\frac{1}{\lim _{z>z_{0}}\left(\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right)}=\frac{1}{f^{\prime}\left(z_{0}\right)} \text { exists }
$$

$\therefore g$ is toolo. and $g^{\prime}\left(\omega_{0}\right)=\frac{1}{f^{\prime}\left(g\left(\omega_{0}\right)\right)} \quad *$

Remark:
If $f: U \rightarrow \mathbb{C}, z_{0} \in U$, and $f^{\prime}\left(z_{0}\right) \neq 0$.
Then f preserver angles at $z o$.
The precise formulation is:
Let γ a η be two (smooth oriented) curves intersecting at z_{0}, then the angle from the cure for to the curve for at $f\left(z_{0}\right)$ equals the angle from the curve γ to the curve η at z_{0}.

(Problem 2 on page 255 of the Textbook.)
Hence
conformal maps preserve angles
1.1 The disc and upper half-plane

Notations: (unit) Disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$

- upper half-plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$

Th 1.2: The map $F: \mathbb{H} \rightarrow \underset{\mathbb{U}}{\mathbb{D}}$
$z \mapsto \frac{i-z}{i+z}$ is a conformal map
with inverse $G=F^{-1}=\underset{\psi}{\mathbb{D}} \rightarrow \underset{\psi}{|H|}$

$$
w \mapsto i \frac{1-w}{1+w} .
$$

Pf: Clearly, $z \in \mathbb{H} \Rightarrow i+z \neq 0 \Rightarrow F$ is hole.

$$
\left\{\begin{array}{l}
w \in \mathbb{D} \Rightarrow 1+w \neq 0 \Rightarrow G \text { is holo. } . ~
\end{array}\right.
$$

Then

$$
\text { - } \begin{aligned}
|F(z)| & =\left|\frac{i-z}{i+z}\right|<1 \\
\Rightarrow & F(\mathbb{H}) \subset \mathbb{D} .
\end{aligned}
$$

- And fa $w=u+i v \in \mathbb{D}$,

$$
\begin{aligned}
& \operatorname{Im}(G(w))= \operatorname{Im}\left(i \frac{1-u-i v}{1+u+i v}\right) \\
&=\frac{1-u^{2}-v^{2}}{(1+u)^{2}+v^{2}}>0 \\
& \therefore G(\mathbb{D}) \subset H
\end{aligned}
$$

Finally $F(G(w))=\frac{i-i \frac{1-w}{1+w}}{i+i \frac{1-w}{1+w}}=w$
\& $\quad G(F(z))=i \cdot \frac{1-\frac{i-z}{i+z}}{1+\frac{i-z}{i+z}}=z$

Remark: $\left.F\right|_{\partial H}=\mathbb{R} \rightarrow \partial \mathbb{D}=S^{\prime}$ is contèums, and

$$
F(x)=\frac{i-x}{i+x}=\frac{1-x^{2}}{1+x^{2}}+i \frac{2 x}{1+x^{2}}
$$

which maps \mathbb{R} to $\mathbb{S}^{\prime} \backslash\{-1\}$

One should think of $F(\infty)=-1$. And $G(-1)=\infty$

Def: Mappings of the form

$$
z \mapsto \frac{a z+b}{c z+d}, \quad(\mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\})
$$

with $a, b, c, d \in \mathbb{C}$ and $a d-b c \neq 0$, are called fractional linear transfamations

Remarks: (i) $a d-b c \neq 0 \Leftrightarrow c z+d \neq k(a z+b)$ and $(a z+b) \neq k(c z+d)$ (fa same $k \in \mathbb{C}$)
$\Leftrightarrow z \mapsto \frac{a z+b}{c z+d}$ is not a constant map.
(ii) Some other authors call them linear fractional transfamations, or Möbins transfamations.
1.2 Further examples

Eg 1 - Translations are confamal

$$
z \mapsto z+h=\mathbb{C} \rightarrow \mathbb{C} \quad(h \in \mathbb{C})
$$

(Inverse $w \mapsto w-h$)
Remark: If $h \in \mathbb{R}$, then $z \mapsto z+h:|H| \rightarrow \mid H$ is conformal.

- Dilations are conformal

$$
z \mapsto c z=\mathbb{C} \rightarrow \mathbb{C} \quad(c \in \mathbb{C} \backslash 10\})
$$

(Inverse $w \mapsto c^{-1} w$)
Remarks:
(i) If $|c|=1$, then $c=e^{i \varphi}$ and $z \mapsto C z=e^{i \varphi} z=\mathbb{C} \rightarrow \mathbb{C}$ is a rotation

When restricted, $z \mapsto e^{i \varphi} z=\mathbb{D} \rightarrow \mathbb{D}$ is also cuffornal.
(ii) $c>0: z \mapsto c z$ is a (real)dilation
when restricted, $z \mapsto C z=H \rightarrow H$ is confamal
(iii) $c<0: \quad z \mapsto C z=-c \mid z$
is a (real) dilation by $|c|$ followed by a rotation of angle π.

Note that translations and dilations are special cosses of fractional linear transfamations:
translations:

$$
\begin{aligned}
& z \mapsto z+h=\frac{z+h}{0 \cdot z+1} \quad \text { ie. } \quad a=1=d, b=h, c=0 \\
& \& \quad a d-b c=1 \neq 0 .
\end{aligned}
$$

dilation $(C \neq 0)$

$$
z \mapsto c z=\frac{c z+0}{0 \cdot z+1} \quad \& \quad c \cdot 1-0 \cdot 0=c \neq 0 .
$$

Eg I' (not in textbook)
(Complex) Inversion

$$
z \mapsto \begin{cases}\frac{1}{z}, & \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\} \\ 0, & z=\infty \\ \infty, & z=0\end{cases}
$$

is conformal.

Note that Inversion is also a fractional linear transfumation

$$
z \mapsto \frac{1}{z}=\frac{0 \cdot z+1}{z+0} \quad \& \quad 0 \cdot 0-1 \cdot 1=-1 \neq 0 .
$$

Properties of fractional linear transfancations
(1) Confumal as maps from $\mathbb{C} U\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$, hence angles preserving.
(2) f, g are fractional linear transfamations $\Rightarrow \quad f \circ g$ is a fractional linear transfanction.
(3) fractional linear transfancation is a composition of translations, dilation and inversions.
(4) fractional linear transfamations map" straight lines \& circles" to "straight lies a circles".

Pf: (1) Clearly $f(z)=\frac{a z+b}{c z+d}$ has derivatives

$$
f^{\prime}(z)=\frac{a d-b c}{(c z+d)^{2}} \neq 0 \quad \text { for } \quad z \neq-\frac{d}{c} .
$$

(we omit the discussion at $z=-\frac{d}{c}$ and $z=\infty$)
Also, clearly $g(w)=\frac{d w-b}{-c w+a}$ is the inverse of f

$$
\text { (Note }=z=-\frac{d}{c} \leftrightarrow w=\infty, z=\infty \leftrightarrow w=\frac{a}{c} \text {) }
$$

$\therefore f$ is conformal (frow $\mathbb{C} U\{\infty\} \rightarrow \mathbb{C} U\{\infty\}$)
(2) If

$$
\begin{array}{ll}
f(z)=\frac{a z+b}{c z+d}, & a d-b c \neq 0 \\
g(z)=\frac{k z+l}{m z+n}, & k n-l m \neq 0
\end{array}
$$

Then $f \circ g(z)=\frac{a\left(\frac{k z+l}{m z+n}\right)+b}{c\left(\frac{k z+l}{m z+n}\right)+d}=\frac{(a k+b m) z+(a l+b n)}{(c k+d m) z+(c l+d n)}$

Note that $\left(\begin{array}{cc}a k+b m & a l+b n \\ c k+d m & c l+d n\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}k & l \\ m & n\end{array}\right)$

$$
\begin{aligned}
\therefore \quad(a k+b m) & (c l+d n)-(a l+b m)(c k+d m) \\
& =\operatorname{det}\left(\begin{array}{cc}
a k+b m & a l+b n \\
c k+d m & c l+d n
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
k & l \\
m & n
\end{array}\right) \\
& =(a d-b c)(k n-l m) \neq 0
\end{aligned}
$$

$\therefore f \circ g$ is a fractional linear transfanation.
(3) $f(z)=\frac{a z+b}{c z+d}, a d-b c \neq 0$

If $c=0$, then $d \neq 0$ \& $f(z)=\left(\frac{a}{d}\right) z+\left(\frac{b}{d}\right)$
is. $\quad z \mapsto\left(\frac{a}{d}\right) z \longmapsto\left[\left(\frac{a}{d}\right) z\right]+\left(\frac{b}{d}\right)=f(z)$
$\begin{array}{cc}\uparrow \\ \text { dilation } & (a \neq 0)\end{array} \quad \begin{gathered}\text { translation }\end{gathered}$

If $C \neq 0$, then

$$
f(z)=\frac{a z+b}{c z+d}=\frac{1}{c} \cdot \frac{a z+b}{z+\frac{d}{c}}
$$

$$
\begin{aligned}
& =\frac{1}{c}\left[\frac{a\left(z+\frac{d}{c}\right)-\frac{a d}{c}+b}{z+\frac{d}{c}}\right] \\
& =\frac{1}{c}\left[a-\frac{\frac{a d}{c}-b}{z+\frac{d}{c}}\right] \\
& =\frac{a}{c}-\frac{(a d-b c)}{c^{2}} \cdot \frac{1}{z+\frac{d}{c}}
\end{aligned}
$$

ie. $\quad z \underset{\uparrow}{\mapsto} z+\frac{d}{c} \rightarrow \frac{1}{z+\frac{d}{c}} \underset{\text { dilation }^{\longrightarrow}}{\longrightarrow}-\frac{(a d-b c)}{c^{2}} \frac{1}{z+\frac{d}{c}}$
translation inversion

$$
\mapsto \frac{a}{c}-\frac{a d-b c}{c^{2}} \frac{1}{z+\frac{d}{c}}
$$

translation.
(4) Note that translations and dilations map straight lines to straight lines, and circles to circles.
Then because of (3), we only need to prove (4) for inversion $\quad z \mapsto \frac{1}{z}$.
let $z=x+i y \& \quad W=s+i t=\frac{1}{z}$
then $\quad s+i t=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$
ie. $\left\{\begin{array}{ll}s=\frac{x}{x^{2}+y^{2}} \\ t & =-\frac{y}{x^{2}+y^{2}}\end{array} \quad\right.$ (Innesioion as a mapping fran $\mathbb{R}^{2}(\{0\}$

Also $\quad w z=1 \Rightarrow|w|^{2}|z|^{2}=1$,
(ie. $\left.\quad s^{2}+t^{2}=\frac{1}{x^{2}+y^{c}}\right)$$\Rightarrow\left\{\begin{array}{l}x=\frac{s}{s^{2}+t^{2}} \\ y=\frac{-t}{s^{2}+t^{2}}\end{array}\right.$
Now let L : $a x+b y+c=0$ be a straight line
Then $\quad \frac{a s}{s^{2}+t^{2}}-\frac{b t}{s^{2}+t^{2}}+c=0$
ie. $\quad C\left(s^{2}+t^{2}\right)+a s-b t=0$
If $c=0$ (ie. L passing thro the aigin), the image of L is the straight live

$$
L^{\prime}=a s-b t=0 \quad(\text { in }(s, t)-\text { plane }) .
$$

If $C \neq 0$ (ie. L not passing tiro the origins)
\therefore the image of L is the circle

$$
c^{\prime}=s^{2}+t^{2}+\left(\frac{a}{c}\right) s-\frac{b}{c} t=0 \quad(\text { in }(s, t)-p \text { lame })
$$

Now let $C=x^{2}+y^{2}+a x+b y+c=0$ be a circle.
Then we have $\frac{1}{s^{2}+t^{2}}+\frac{a s}{s^{2}+t^{c}}-\frac{b t}{s^{2}+t^{2}}+c=0$

$$
\Rightarrow \quad c\left(s^{2}+t^{2}\right)+a s-b t+1=0
$$

If $C=0$, the mage of C is a straight lime

$$
L^{\prime}: a s-b t+1=0
$$

If $C \neq 0$, the mage of C is a circle

$$
c^{\prime}=s^{2}+t^{2}+\left(\frac{a}{c}\right) s-\left(\frac{b}{c}\right) t+\frac{1}{c}=0
$$

Eg 3 (of the Text book)

$$
\begin{aligned}
f(z)=\frac{1+z}{1-z} & :\{z=x+i y=|z|<\mid \text { and } y>0\}=\mathbb{D}^{+} \\
& \longrightarrow\{w=u+i v=u>0 \text { and } v>0\}=s
\end{aligned}
$$

is confamal.
Note: f is a fractional linear transfamation

$$
f(z)=\frac{z+1}{-z+1} \quad \text { with } \quad 1 \cdot 1-(1)(-1)=2 \neq 0
$$

$\therefore f$ is injective, Rance remain to shaw $f\left(\mathbb{D}^{+}\right)=S$.
Observe that $f(-1)=0, f(0)=1, f(1)=\infty$

By property (4) of fractional linear transfamatio, the real lire segment between -1 \& 1 maps to part of a straight live ar a circle.

Since it passes turought $f(-1)=0, f(0)=1$ \& $f(1)=\infty$, it is the positive real axis.

Similarly, the upper semicircle neaps to part of
a straight line a a circle passing throught 0 and ∞, and hence must be a straight line.

Since the angles from $[-1,1]$ to the semi-circle is $\frac{\pi}{2}$, the angle from the poritine x-axis to the usage straight lire of the semicircle is also $\frac{\pi}{2}$ (f confual)
\therefore the image of the upper semi-cirele is the positive y - $a x$ is.
(Positivity can also be confirmed by $f(i)=\frac{1+i}{1-i}=i$)
This shoos that $f\left(\mathbb{D}^{+}\right)=S$ (as f is confamel : $\mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty \xi$)
(Of course, all these can bee proved by using coordinates as in the Textbook)

Eg 2 (of the Textbook)
For $n=1,2,3, \cdots, \quad z \mapsto z^{n}: S \rightarrow \mathbb{H}$ is confamal, where $S=\left\{z \in \mathbb{C}: 0<\arg (z)<\frac{\pi}{n}\right\}$

Inverse $\quad w \rightarrow w^{\frac{1}{n}}=H H \rightarrow S$
where $w^{\frac{1}{n}}=e^{\frac{1}{n} \log w}$ with $\log w=$ principal branch

More generally, fa $0<\alpha<2 \quad\left(0<\frac{1}{n} \leqslant 2\right)$

$z \in H$

$$
S=\{w \in \mathbb{C}: 0<\arg (w)<\alpha \pi\}
$$

with inverse $w \mapsto W^{\frac{1}{\alpha}}=e^{\frac{1}{\alpha} \log w}$
where branch of $\log \omega$ s.t. $0<\arg \omega<\alpha \pi$.
(Boundary behavior as in the figure.)
Conclusion:
One can map IH confanally to any (infinite) sector in \mathbb{C} (by composing the maps here with translations a rotations.)

Eg 4: $z \mapsto \operatorname{bog} z$ branch defied by deleting $\{x<0\}$ (ie. $-\pi<\arg z<\pi$)
maps $\left.H^{\text {confumally to strip }\{W=u t i v: ~} 0<U<\pi\right\}$.

By the choice of the branch, far $z=r e^{i \theta}, 0<\theta<\pi$

$$
\begin{aligned}
& \log z=\log r+i \theta \\
\therefore \quad & u=\log r \in \mathbb{R} \text { and } v=\theta \in(0, \pi)
\end{aligned}
$$

The inverse is $w \mapsto e^{w}$.

Eg 5 Same $z \mid \rightarrow \log z$ maps $\mathbb{D}^{+}=\{z=x t i y:|z|<1, y>0\}$ confamally to loaf strip $\{w=u+i v=u<0,0<v<\pi\}$, since $\quad U=\log r<0$.

Ego: $f(z)=e^{i z}$ maps $\left.\underbrace{}_{-\frac{\pi}{2}}\right|_{\frac{\pi}{2}}$ confanmally onto

