$$\frac{\text{Thm 7.4}}{\text{S(S)}} = 5(S) \text{ thas a were mappic cartinuation into the whole Cwhose only singularity is a simple pole at S=1.
$$\frac{\text{Pf}: \text{ By definition of $F(S)$, we have}{5(S) = T^{\frac{2}{2}} = \frac{F(S)}{T(\frac{5}{2})}}$$

$$\frac{\text{By Thm 1.6}, \quad \frac{1}{T(\frac{5}{2})} \text{ is entire with simple zeros at}{S=0, -2, -4, -..}$$

$$\Rightarrow S=0 \text{ is a removable singularity of $F(\frac{5}{2})$, fits:
$$\Rightarrow S(S) \text{ is meromorphic with a simple pole at S=1 only}.$$

$$\frac{\text{Question}}{T(\frac{5}{2})} \text{ is ves}_{S=1} 5(S) ? (answer=1, Ex!)$$$$$$

$$\frac{\Pr p_{rop 2.5}}{[\delta_n(s)]} = \frac{1}{seq} \text{ of entire function } \left[\delta_n(s)\right]_{N=4}^{\infty} \text{ such that}$$

$$\left[\left|\delta_n(s)\right| \leq \frac{|s|}{N^{\text{res}+1}}\right], \forall s \in \mathbb{C} \text{ and}$$

$$\left(\frac{8}{1}\right) = \sum_{1 \leq n < N} \frac{1}{n^s} - \int_{1}^{N} \frac{dx}{x^s} = \sum_{1 \leq n < N} \delta_n(s) \quad , \quad (N=2,3,\cdots).$$

<u>Pf</u>: Define $\delta_n(s) = \int_n^{h+1} \left(\frac{1}{n^s} - \frac{1}{x^s}\right) dx$ (entire)

By path integral of
$$f(z) = Sz^{-S-1}$$
 (for $Re z > 0$)
along $Z(t) = x + t(n-x)$, $t \in [0,1]$, we have
 $\left|\frac{1}{n^{s}} - \frac{1}{x^{s}}\right| \leq \int_{0}^{1} |S| \left[x + t(n-x) \int_{0}^{-S-1} \left||n-x|\right| dt$
 $\leq \frac{|S|}{n^{\sigma+1}}$ for $x \in [n, n+1]$ (where $\sigma = Re S$)
 $\Rightarrow |\delta_{n}(S)| \leq \int_{n}^{n+1} \left|\frac{1}{n^{s}} - \frac{1}{x^{s}}\right| dx \leq \frac{|S|}{n^{\sigma+1}}$.

Summing up

$$\sum_{n=1}^{N-1} \delta_n(s) = \sum_{n=1}^{N-1} \int_n^{n+1} \left(\frac{1}{n^s} - \frac{1}{x^s} \right) dx = \sum_{n=1}^{N-1} \frac{1}{n^s} - \int_1^N \frac{dx}{x^s} dx$$

$$\frac{Gor 2.6}{S(S) - \frac{1}{S-1}} = H(S)$$
where $H(S) = \sum_{n=1}^{\infty} \delta_n(S)$ is hold. in $\{Re(S) > 0\}$

(in fact on
$$4|S| < R \le n(2E(S) \ge \delta \le, \forall R \ge 0 \ge \delta \ge 0)$$

 $since \ge \frac{1}{n^{\delta+1}} < \infty \quad fn \ge 0$
Hume $H(S) = n \ge \delta n(S) \Rightarrow 400$ on $4R_2(S) > 0 \le 2 \{R_2(S) > 1\}$
 $\therefore \qquad S(S) - \frac{1}{S-1} = H(S) \quad fn \quad R_2(S) > 1$.
Note that $S(S) \quad hns \quad analytic continuation fo $\{R_2(S) > 0 \le 1\}$
and $res_{S=1} \le (S) = 1$. By uniqueness, the equality
 $\le (S) - \frac{1}{S-1} = H(S)$
also holds on $\{R_2(S) > 0 \le ... \}$$

$$\int \frac{d(t)}{d(t+\lambda + 2)} = O(|t|^{\epsilon})$$

$$\int \frac{d(t+\lambda + 2)}{d(t+\lambda + 2)} = O(|t|^{\epsilon})$$

$$\int \frac{d(t+\lambda + 2)}{d(t+\lambda + 2)} = O(|t|^{\epsilon})$$

 $\frac{Pf \text{ of } Prop 2.7}{Pnp 2.5} :$ $Rnp 2.5 \Rightarrow [\delta_n(s)] \leq \frac{|s|}{n^{\sigma+1}} \leq \frac{|s|}{n^{\sigma_0+1}} \text{ for } \sigma_0 \leq \sigma$ $And \quad \delta_n(s) = \int_n^{n+1} \left(\frac{1}{n^s} - \frac{1}{x^s}\right) dx$ $aloo \Rightarrow [\delta_n(s)] \leq \left[\frac{1}{n^s}\right] + \left[\frac{1}{x^s}\right] \text{ fn } x \in [n, n+1]$ $\leq \frac{2}{n^{\sigma}} \leq \frac{2}{n^{\sigma_0}}$ $Then \quad \forall \ 0 \leq \delta \leq 1$ $\left[\delta_n(s)\right] = \left|\delta_n(s)\right|^{\delta} \left|\delta_n(s)\right|^{1-\delta} \leq \left(\frac{|s|}{n^{s+1}}\right)^{\delta} \left(\frac{2}{n^{\sigma_0}}\right)^{1-\delta}$ $\leq \frac{2}{n^{\sigma_0}+\delta}$

If $0 \le 50$, then $\delta = 1 - 50 + \epsilon \le 1$ $\vdots \quad |\delta_n(s)| \le \frac{2|s|^{1 - 50 + \epsilon}}{n^{1 + \epsilon}}$.

 $\begin{aligned} (\operatorname{or } 2.6 \\ \Rightarrow \quad |5(s)| \leq \frac{1}{(S-1)} + 2|s|^{1-\sigma_0+\varepsilon} \sum_{N=1}^{\infty} \frac{1}{N^{1+\varepsilon}} \quad \forall \quad \sigma \geq \sigma_0 \\ \\ \operatorname{For} \quad \sigma \geq 2, \quad |5(s)| \leq \frac{2}{n-\varepsilon} \quad \frac{1}{n^{\sigma}} \leq \sum_{N=1}^{\infty} \frac{1}{N^2} \\ \\ \operatorname{For} \quad 0 < \sigma_0 \leq \sigma < 2 \quad \text{and} \quad |t| \geq 1, \quad |s| = |t_t| \left| \frac{\sigma}{t} + \tilde{t} \right| \leq 3|t_t|, \\ \\ |5(s)| \leq C + \left(2 \cdot 3^{1+\varepsilon} \sum_{N=1}^{\infty} \frac{1}{N^{1+\varepsilon}} \right) |t_t|^{1-\sigma_0+\varepsilon} \leq C_{\varepsilon} |t_t|^{1-\sigma_0+\varepsilon} \end{aligned}$

Togetter
$$\Rightarrow$$
 for $0:50 \le 0 \le 1 \pm 1 \ge 1$, we have
 $|5(S)| \le C_{E}|\pm|^{1-C_{0}+E}$ (a new C_{E}) (for occess)
In porticular, choosing $E'>0$ sufficiently small, $\exists 5'\le 1 \le 1$.
 $|3(S)| \le C_{E'}|\pm|^{5'}$ for $0 \le 0 \le 0 \le T \ge 1 \pm 21$
Hence for $E>00$, $\delta = |-00+E>1 \ge 5'$, and we have
 $|3(S)| \le C_{E'}|\pm|^{5}$, $\forall 0 \le 0 \le T \le 1 \pm 1 \ge 1$
Therefore, we have proved that
 $\forall E>0$, $|3(S)| \le C_{E}|\pm|^{1-00+E}$ on $0 \le 0 \le T \le 1\pm 1 \ge 1$
This proves (i).
To prove (i), for $0 \ge 1 \le 1 \pm 1 \le 1$,
the circle $S+Te^{10}$, $\Theta \in [0,2\pi]$
with radius $T \le 1 \le 1 \pm 1 \le 1$
Take $\sigma = |-T \le E = T$ in (i), we have
 $|3(S+Te^{10})| \le C_{T}|\pm^{1-(T-T)+T}$
 $\le C_{T}|\pm|^{2T}$ for $|\pm|-T \ge 1$.

Then Cauchy integral famula $\Rightarrow |S(S)| \leq \frac{1}{2\pi r} \int_{0}^{2\pi} |S(S+re^{i\theta})| d\theta$ $\leq \frac{1}{r} C_{r}^{r} |t|^{2r}, \quad \forall |t| \geq |s| |T| \geq 1.$

Since |> T>0 is anbitrary, we have that $\forall 0 < \varepsilon < 2$ $|\leq (S)| \leq C_{\varepsilon} |t|^{\varepsilon}$, $\forall |t| \geq |s| \quad \sigma \geq 1$ Using $|t| \geq 1$, we have $\forall \varepsilon \geq 2$,

$$|S(S)| \leq C_{|} |t| \leq C_{|} |t|^{\varepsilon} \quad \forall |t| \geq | \leq C \geq C_{|} |t|^{\varepsilon}$$

Altogether,
$$\forall \epsilon > 0, \exists C_{\epsilon} > 0 \leq \epsilon$$
.
 $|\underline{\zeta}(s)| \in C_{\epsilon} |\underline{t}|^{\epsilon}, \forall |\underline{t}| \geq |\underline{s}| = 0$

This proves (ii).

Ch7 The Zeta Function and Prime Number Theorem

Def: The function
$$TT(X)$$
 for $X > 0$ is defined by
 $TT(X) = number$ of primes $p \le X$.

Prime Number Thenem

$$\pi(\chi) \sim \frac{\chi}{\log \chi} \quad \text{as} \quad \chi \to \infty$$

Recall: Asymptotic relation f(x) - g(x) as $x \to \infty$ means that $\frac{f(x)}{g(x)} \to 1$ as $x \to \infty$.

goal of this Chapter: We S(S) to prove Prime Number Thenen.

Relationship of
$$S(s)$$
 to prime numbers:

$$S(s) = \prod_{p} \frac{1}{(-p^{-s})}, \quad \text{Re}(s) > 1$$
where the infinite product is over all primes.

$$f: \text{Fundamental theorem of Arithmetic} \Rightarrow$$

Pf: Fundamental there is of Arithmetic ⇒

$$\forall h \in \{2, 3, \dots \}, \quad n = p_1^{k_1} \dots p_m^{k_m}$$
 in a unique way
where p_i are primes \notin $k_i \ge 0$ are integers

⇒ For integers M>N, $\prod_{p \in N} \left[1 + \frac{1}{p^{s}} + \frac{1}{(p^{2})^{s}} + \frac{1}{(p^{m})^{s}} \right] = \sum_{p_{1} \in N} \frac{1}{(p^{k_{1}} - p^{k_{m}})^{s}}$ with $k_i \leq M$ and $m \leq T(N)$ Note that pizz => Vn ≤ N, $N = P_i^{k_1} \dots P_m^{k_m}$ for some $P_i \leq N$ and $k_i \leq M$ $\begin{array}{c} \vdots \\ p \leq N \end{array} \begin{bmatrix} 1 + \frac{1}{p^{s}} + \frac{1}{(p^{s})^{s}} & \cdots + \frac{1}{(p^{m})^{s}} \end{bmatrix} \xrightarrow{2} \\ \sum_{n=1}^{N} \frac{1}{n^{s}} \end{array}$ On the other hand, $\sum_{p_i \leq N} \frac{1}{(p_i^{k_1} \dots p_m^{k_m})^s}$ has only finitely many terms, we also have $\prod_{p \leq N} \left[\left| + \frac{1}{p^{s}} + \frac{1}{(p^{s})^{s}} \cdots + \frac{1}{(p^{m})^{s}} \right] \leq \sum_{n=1}^{\infty} \frac{1}{n^{s}} = \Im(s) .$ Note that we have used the uniqueness of prime factorization. Now by $1 + \frac{1}{p^{s}} + \frac{1}{(p^{2})^{s}} + \frac{1}{(p^{m})^{s}} = \frac{1 - (p^{-s})^{m(1)}}{1 - p^{-s}}$ $\sum_{n=1}^{N} \frac{1}{p^{s}} \leq \prod_{\substack{p \in N \\ p \in N}} \frac{1-(p^{s})^{MTI}}{1-p^{-s}} \leq 5(s)$ we have Letting $M \gg \infty$ $(M > N) \implies \sum_{n=1}^{N} \frac{1}{n^{s}} \leq \prod_{p \leq N} \frac{1}{1 - p^{-s}} \leq 3(s)$ Letting N > 00, we proved the Relation for s>1. Then uniqueness of analytic continuation indies it holds for Res>1. X

$$\frac{\operatorname{Tim} 1.1}{\operatorname{The}} \operatorname{ally} \operatorname{geros} of 5(s) \operatorname{outside} 0 \leq \operatorname{Re}(s) \leq 1, \text{ the}}{\operatorname{outside} \operatorname{strip}}, \operatorname{are} -2, -4, -6, \cdots}$$

$$\frac{\operatorname{PI}: \operatorname{Fa} \operatorname{Re}(s) > 1, \quad 5(s) = \prod_{P} \frac{1}{1-F^{S}} \neq 0$$
For $\operatorname{Re}(s) < 0$, we use the functional equation
$$\frac{5}{7}(s) = 5(1-s),$$
where
$$\frac{5}{7}(s) = \pi^{-\frac{5}{2}} \operatorname{T}(\frac{s}{2}) 5(s).$$
Rewrite the functional equation as
$$\frac{5(s) = \pi^{-\frac{5}{2}} \operatorname{T}(\frac{1-s}{2}) \frac{5}{7}(1-s).$$
Re(s) < 0 \Rightarrow $\operatorname{Re}(1-s) > 1 \Rightarrow 5(1-s) \neq 0$
 $\cdot \operatorname{clearly} \operatorname{T}(\frac{1-s}{2}) \neq 0 = \pi^{S-\frac{1}{2}} \neq 0$
 $\cdot \operatorname{and}$ by Thm 1.6 $\frac{1}{7} \operatorname{T}(\frac{s}{2}) \frac{1}{5}(s) \operatorname{are} \frac{1}{5} = 0, -1, -2, \cdots$
All togetter, the gerose of 5(s) in the initial strip
$$\frac{\operatorname{Re}(s) + 1}{\operatorname{Riemann}} \frac{1}{\operatorname{hypotheses}} : \operatorname{The} \operatorname{geros} of \frac{5}{5}(s) \cdot \operatorname{In}$$
 the initial strip
$$\operatorname{Rieman} \frac{1}{\operatorname{hypotheses}} : \operatorname{The} \operatorname{geros} of \frac{5}{5}(s) \cdot \operatorname{In}$$
 the initial strip
$$\operatorname{Riemann} \frac{1}{\operatorname{hypotheses}} : \operatorname{The} \operatorname{geros} of \frac{5}{5}(s) \cdot \operatorname{In}$$
 the initial strip
$$\operatorname{Riemann} \frac{1}{\operatorname{hypotheses}} : \operatorname{The} \operatorname{geros} of \frac{5}{5}(s) \cdot \operatorname{In}$$
 the initial strip
$$\operatorname{Init} \operatorname{con} \operatorname{He} \operatorname{Inite} \operatorname{Re}(s) = \frac{1}{2}.$$

(ii) S=-z,-4,-6,... are called the trivial zeros of 5(s).

 $Thm 1.2 \quad S(1+t+1) \neq 0, \forall t$

<u>Pemark:</u> the pole S=1 (i.e. t=0) is included,

The proof needs some lemmas.

Lemma 1.3 If
$$Re(S) > 1$$
, then
 $log S(S) = \sum_{p,m} \frac{1}{m} p^{-Sm} = \sum_{n=r}^{\infty} \frac{Cn}{n^{S}}$
for some $Cn \ge 0$.

Pf: For S>1, $\log S(S) = \log \prod_{p \to 1} \frac{1}{1-p^{-S}} = \sum_{p \to 1} \log \frac{1}{1-p^{-S}}$ $\left(\text{since } p^{-s} < p^{-1} < | \right)$ $= \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{m} (p^{2})^{m}$ Since the double sum converges absolutely, we have $\log S(S) = \sum_{p,m} \int_{m} p^{-sm}$ Clearly, the absolute convergence of the double sum holds for Re(S) > 1 ($(p^{-S}) = p^{-ReS} < p^{-1} < 1$) the RHS defines a holo. function on Re(S)>1, Then migueness of analytic continuention \Longrightarrow $\log \zeta(S) = \sum_{p,m} \sum_{m} p^{Sm} \forall R_{0}(S) > 1$. Note that the general term of the sum is $\frac{1}{m}(p^m)^{-s}$,

we have
$$\log_2 S(S) = \sum_{n=1}^{k} C_n n^{-S}$$
 with
 $C_n = \left\{ \frac{1}{m}, i \notin n = \#^{M} \text{ for some prive } P \right.$
 $O, \text{ otherwise}.$
 $\mathbb{E} \left\{ \frac{1}{m} + \forall \theta \in \mathbb{R}, 3 + 4(\#\theta + (\#2\theta \ge 0)) \right\}$
 $\mathbb{E} \left\{ 3 + 4(\#\theta + (\#2\theta = 2)(1 + (\#2\theta + 2)) \right\}$
 $\mathbb{E} \left\{ 3 + 4(\#\theta + (\#2\theta = 2)(1 + (\#2\theta + 2)) \right\}$
 $\mathbb{E} \left\{ \frac{1}{m} + \frac{1}{m} \right\} \left\{ \frac{1}{m} + \frac{1$

Pf of Thm 1.2 Suppose on the contrary that 5(1+ito)=0 for some to=0 We consider the 3 factors in Corl.5 for $\sigma \rightarrow 1 \times t = t_0$. Since S(S) is hold. Man S=1+ito, to=0, $S(s) = (S - (Hit_{a}))^{m} h(s)$ wear $S = (Hit_{a})$ with . M = 1 · h(s) hold near S= Itits and h(Itits) = 0. Hence for some coust. C>0, $(*)_{I} | S(T+ito)|^{4} \leq C(T-I)^{4} \text{ as } T \rightarrow 1 \quad (T>I)$ Then using S=1 is a simple pole of 5(5), we also have $\left| \zeta(\sigma) \right|^{3} \leq \frac{C_{1}}{(\nabla - 1)^{3}} \quad \text{as} \quad \sigma \to 1 \quad (\nabla > 1)$ (*)₂ Finally, S(S) holo, war S=1+zito, $|\xi(\sigma+zito)| \leq C_2 \quad ao \quad \sigma \rightarrow 1 \quad (\sigma > 1)$ $(\mathcal{K})_{3}$ Combining (*), (*), (*), and (or 1.5, we have $|\leq|5(\sigma)5(\sigma+ik_{0})5(\sigma+ik_{0})| \rightarrow 0 \quad \text{as} \quad \sigma \rightarrow 1 \quad (\sigma > 1)$ which is a contradiction. The proof is completed. X

1.1 Estimates for
$$\frac{1}{563}$$

Prop 1.6 $48 > 0$, $\exists C_{E} > 0$ st.
 $\exists [55] \leq C_{E} |t|^{E}$ for $S = \sigma + it$, $\sigma \geq 1$ and $|t| \geq 1$.
Pf: By Corlis and 5(s) ally that a pole at $S = 1$, we have
 $|5(\sigma) 5^{4}(\sigma + it) 5(\sigma + z + z)| \geq 1$, $\forall \sigma \geq 1$
By Prop 2.7(i) of Ch6, $(takeng \sigma_{e} = 1)$
 $|5(\sigma + z + z)| \leq C_{1} |t|^{E}$ $\forall \sigma \geq 1 \approx |t| \geq 1$. $(C_{1} = C_{1}(E) > 0)$
Hence
 $| \leq |5^{2}(\sigma) 5^{4}(\sigma + it)| \cdot C_{1} |t|^{E}$
Then similar to $(t)_{2}$ in the proof of Thm 1.2,
 $|5^{3}(\sigma)| \leq \frac{C_{2}}{(\sigma - 1)^{3}}$ for $\sigma > 1$. $(C_{3} = C_{3}(E) > 0)$

Hence
$$|S(\tau+it)| \ge \frac{C_3(\tau-i)^3}{|t|^2}$$
 $\forall \tau > | \ge |t| \ge 1$
and clearly this inequality trivially holds for $\tau = 1$.
Hence

$$(3) \quad \left(\int (U + i + 1) \right) = C_4 (U - 1)^{\frac{3}{4}} + \frac{1}{4} \int \frac{$$

Note that by Prop 2.7 (ii) of Ch6, we have
for
$$\sigma' > \sigma > 1$$
,
 $|S(\sigma' + i +) - S(\sigma + i +)| \le |S'(\sigma_c + i +)| |\sigma' - \sigma|$ for some $\sigma \le \sigma_c \le \sigma'$
 $\le C_S |+|^E |\sigma' - \sigma|$ $(C_S = C_S(E) > 0)$
 $\le C_S (+|^E (\sigma' - 1))$. $(\sigma' > \sigma > 1)$

Let
$$A = \left(\frac{c_4}{2c_5}\right)^4 > 0$$
.
Gree 1 $U = 1 \ge A |t|^{-5\epsilon}$
Then $(3) \Longrightarrow |3(0+it)| \ge c_4 (A |t|^{-5\epsilon})^{\frac{2}{4}} |t|^{-\frac{\epsilon}{4}}$
 $= (c_4 A^{\frac{2}{4}}) (t_1)^{-4\epsilon}$

$$= \left[C_4 \cdot \frac{2C_5}{C_4} \cdot |t|^{\epsilon} - C_5 |t|^{\epsilon} \right] (\sigma' - 1)$$
$$= C_5 |t|^{\epsilon} (\sigma' - 1)$$
$$= C_5 A |t|^{-4\epsilon}$$

Hence $\forall \varepsilon > 0$, $[S(\sigma + i t)] \ge C_{\varepsilon} (t)^{-4\varepsilon}$