Thm2.4 $S(s)$ has a veromaplic continuation into the whole \mathbb{C} whose only singularity is a simple pole at $s=1$.

Pf: By definition of $\xi(s)$, we have

$$
\zeta(s)=\pi^{\frac{s}{z}} \frac{\xi(s)}{\Gamma\left(\frac{s}{2}\right)}
$$

By Thm 1.6, $1 / \Gamma\left(\frac{s}{2}\right)$ is entire with sünple zeros at

$$
s=0,-2,-4, \cdots
$$

$\Rightarrow \quad s=0$ is a removable singularity of $\xi(s) / \Gamma\left(\frac{s}{2}\right)$.
$\Rightarrow S(s)$ is meromapdic with a simple pole at $s=1$ only.

Question : What is res $s_{s=1} \zeta(s)$? (answer $=1, E_{x}!$)

Prop 2.5 \exists seq. of entire function $\left\{\delta_{n}(s)\right\}_{n=1}^{\infty}$ such that

$$
\text { - }\left|\delta_{n}(s)\right| \leqslant \frac{|s|}{n^{\text {Res+1}}}, \forall s \in \mathbb{C} \quad \text { and }
$$

(8)- $\sum_{1 \leqslant n<N} \frac{1}{n^{s}}-\int_{1}^{N} \frac{d x}{x^{s}}=\sum_{1 \leqslant n<N} \delta_{n}(s) \quad,(N=2,3, \cdots)$.

Pf: Refine $\quad \delta_{n}(s)=\int_{n}^{n+1}\left(\frac{1}{n^{s}}-\frac{1}{x^{s}}\right) d x \quad$ (entire)

By path integral of $f(z)=s z^{-s-1} \quad(f \sim \operatorname{Re} z>0)$ along $z(t)=x+t(n-x), t \in[0,1]$, we have

$$
\begin{aligned}
\left|\frac{1}{n^{s}}-\frac{1}{x^{s}}\right| & \leq \int_{0}^{1}|s|\left|[x+t(n-x)]^{-s-1}\right||n-x| d t \\
& \left.\leqslant \frac{|s|}{n^{\sigma+1}} \quad \text { for } x \in[n, n+1] \quad \text { (where } \sigma=\operatorname{Res}\right) \\
\Rightarrow\left|\delta_{n}(s)\right| & \leqslant \int_{n}^{n+1}\left|\frac{1}{n^{s}}-\frac{1}{x^{s}}\right| d x \leqslant \frac{|s|}{n^{\sigma+1}} .
\end{aligned}
$$

Summing up

$$
\sum_{n=1}^{N-1} \delta_{n}(s)=\sum_{n=1}^{N-1} \int_{n}^{n+1}\left(\frac{1}{n^{S}}-\frac{1}{x^{S}}\right) d x=\sum_{n=1}^{N-1} \frac{1}{n^{S}}-\int_{1}^{N} \frac{d x}{x^{s}}
$$

Cor 2.6 $\mathrm{Fa} \operatorname{Re}(\mathrm{s})>0$,

$$
\zeta(s)-\frac{1}{s-1}=H(s)
$$

where $H(s)=\sum_{n=1}^{\infty} \delta_{n}(s)$ is hold. in $\{\operatorname{Re}(s)>0\}$.

Pf: $\operatorname{For} \operatorname{Re}(s)>1$,
the LHS of the famula $(8) \rightarrow S(S)-\frac{1}{S-1}$ as $N \rightarrow \infty$.
Fou the RHS, Prop $2.5 \Rightarrow\left|\delta_{n}(s)\right| \leqslant \frac{|S|}{n^{\operatorname{Res}+1}}, \forall n$
$\Rightarrow \sum_{n=1}^{\infty} \delta_{n}(s)$ converges miffumly on $\{|s|<R\} \cap\{\operatorname{Re}(s)>0\}, \forall R>0$;
(bally)
$\binom{$ in fact on $\{|S|<R\} \cap\{\operatorname{Re}(S) \geq \delta\}, \forall R>0 \& \delta>0}{$ since $\sum \frac{1}{n^{\delta+1}}<\infty$ for $\delta>0}$
Hence $H(s)=\sum_{n=1}^{\infty} \delta_{n}(s)$ is hold. on $\{\operatorname{Re}(s)>0\} \supset\{\operatorname{Re}(s)>1\}$

$$
\therefore \quad S(s)-\frac{1}{s-1}=H(s) \text { for } \operatorname{Re}(s)>1
$$

Note that $\zeta(s)$ hus analytic continuation to $\{\mathfrak{R e}(s)>0\} \backslash\{s=1\}$ and $\operatorname{res}_{s=1} \zeta(s)=1$. By uniqueness, the equality

$$
\zeta(s)-\frac{1}{s-1}=H(s)
$$

also holds an $\{\operatorname{Re}(s)>0\}$.

Prop 2.7 Suppose $S=\sigma+i t,(\sigma, t \in \mathbb{R})$.
Then $\forall \sigma_{0} \in(0,1], \quad\left(\sigma_{0}=0\right.$ is not needed $)$ and $\forall \varepsilon>0, \quad \exists$ constant C_{ε} (depending on $\varepsilon>0$ all)
(i) $|\zeta(s)| \leqslant C_{\varepsilon}|t|^{1-\sigma_{0}+\varepsilon}$ fr $\quad \sigma_{0} \leqslant \sigma \&|t| \geq 1$.
(ii) $\left|\zeta^{\prime}(S)\right| \leqslant C_{\varepsilon}|t|^{\varepsilon} \quad f \sim \quad 1 \leqslant \sigma \& \quad|t| \geqslant 1$

Remark: In particular, one has

$$
\left\{\begin{array}{l}
\zeta(1+i t)=O\left(|t|^{\varepsilon}\right) \\
\zeta^{\prime}(1+i t)=O\left(|t|^{\varepsilon}\right)
\end{array} \quad \text { as }|t| \rightarrow \infty .\right.
$$

Pf of Prop 2.7:
Prop 2.5 $\Rightarrow \quad\left|\delta_{n}(s)\right| \leqslant \frac{|s|}{n^{\sigma+1}} \leqslant \frac{|s|}{n^{\sigma_{0}+1}} \quad$ for $\quad \sigma_{0} \leqslant \sigma$
And $\delta_{n}(s)=\int_{n}^{n+1}\left(\frac{1}{n^{s}}-\frac{1}{x^{s}}\right) d x$
also $\Rightarrow\left|\delta_{n}(s)\right| \leqslant\left|\frac{1}{n^{s}}\right|+\left|\frac{1}{x^{s}}\right| \quad$ fo $x \in[n, n+1]$

$$
\leqslant \frac{2}{n^{\sigma}} \leqslant \frac{2}{n^{\sigma_{0}}}
$$

Then $\forall 0 \leqslant \delta \leqslant 1$

$$
\begin{aligned}
\left|\delta_{n}(s)\right| & =\left|\delta_{n}(s)\right|^{\delta}\left|\delta_{n}(s)\right|^{1-\delta} \leqslant\left(\frac{|s|}{n_{0}^{\sigma_{0}+1}}\right)^{\delta}\left(\frac{2}{n^{\sigma_{0}}}\right)^{1-\delta} \\
& \leqslant \frac{2|s|^{\delta}}{n^{\sigma_{0}+\delta}}
\end{aligned}
$$

If $0<\varepsilon \leqslant \sigma_{0}$, then $\delta=1-\sigma_{0}+\varepsilon \leqslant 1$

$$
\therefore \quad\left|\delta_{n}(s)\right| \leqslant \frac{z|s|^{1-\sigma_{0}+\varepsilon}}{n^{1+\varepsilon}}
$$

Cor 2.6

$$
\Rightarrow \quad|\zeta(s)| \leqslant \frac{1}{|s-1|}+z|s|^{1-\sigma_{0}+\varepsilon} \sum_{n=1}^{\infty} \frac{1}{n^{1+\varepsilon}} \quad \forall \sigma \geqslant \sigma_{0}
$$

For $\sigma \geqslant 2, \quad|\zeta(s)| \leq \sum_{n=1}^{\infty} \frac{1}{n^{\sigma}} \leqslant \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
Fa $0<\sigma_{0} \leqslant \sigma<2$ and $|t| \geq 1, \quad|s|=|t|\left|\frac{\sigma}{t}+i\right| \leqslant 3|t|$,

$$
|\zeta(s)| \leqslant C+\left(2 \cdot 3^{1+\varepsilon} \sum_{n=1}^{\infty} \frac{1}{n^{++\varepsilon}}\right)|t|^{1-\sigma_{0}+\varepsilon} \leqslant C_{\varepsilon}|t|^{1-\sigma_{0}+\varepsilon}
$$

Together \Rightarrow fa $0<\sigma_{0} \leqslant \sigma \&|t| \geqslant 1$, we have

$$
|\zeta(S)| \leqslant C_{\varepsilon}|t|^{1-\sigma_{0}+\varepsilon} \quad\left(\text { a new } C_{\varepsilon}\right) \quad\left(\begin{array}{l}
\text { proved }(i) \\
f a r \\
f
\end{array}\right)
$$

In particular, choosing $\varepsilon^{\prime}>0$ sufficiently small, $\exists \delta^{\prime} \leqslant 1$ s.t.

$$
|\zeta(S)| \leqslant C_{\varepsilon^{\prime}}|t|^{\delta^{\prime}} \quad \text { fa } \quad 0<\sigma_{0} \leqslant \sigma \quad \& \quad|t| \geqslant 1
$$

Hence far $\varepsilon>\sigma_{0}, \delta=1-\sigma_{0}+\varepsilon>1 \geqslant \delta^{\prime}$, and we have

$$
|\zeta(S)| \leqslant C_{\varepsilon^{\prime}}|t|^{\delta}, \forall 0<\sigma_{0} \leqslant \sigma \quad \& \quad|t| \geqslant 1
$$

Therefore, we have proved that

$$
\forall \varepsilon>0, \quad|\zeta(s)| \leqslant C_{\varepsilon}|t|^{1-\sigma_{0}+\varepsilon} \quad \text { on } 0<\sigma_{0} \leqslant \sigma \&|t| \geqslant 1
$$

This proves (j).

To prove (ii), for $\sigma \geq 1$ \& $|t| \geq 1$, the circle $S+r e^{i \theta}, \theta \in[0,2 \pi]$ with radius $r<1$ lies in the half plane

$$
\{\sigma+i t: \sigma>1-r\}
$$

Take $\sigma_{0}=1-r$ \& $\varepsilon=r$ in (i), we have

$$
\begin{aligned}
\left|\zeta\left(s+r e^{i \theta}\right)\right| & \leqslant C_{r}|t+r \sin \theta|^{1-(1-r)+r} \\
& \leqslant C_{r}^{\prime}|t|^{2 r} \quad \text { far }|t|-r \geqslant 1 .
\end{aligned}
$$

If $|t|-r \leqslant 1$ then $(t) \leqslant 2$,
$\Rightarrow\left|S\left(S+r e^{i \theta}\right)\right|$ is bounded (depending on r)
as $\left|s+r e^{i \theta}-1\right| \geq|s-1|-r \geq 1-r$
Hence $\left|\zeta\left(S+r e^{i \theta}\right)\right| \leqslant C_{r}^{\prime \prime}|t|^{2 r} \quad \forall|t| \geqslant 1 \quad(\& \sigma \geqslant 1)$

Then Cauchy integral famula

$$
\begin{aligned}
\Rightarrow \quad\left|\zeta^{\prime}(s)\right| & \leqslant \frac{1}{2 \pi r} \int_{0}^{2 \pi}\left|3\left(s+r e^{i \theta}\right)\right| d \theta \\
& \leqslant \frac{1}{r} C_{r}^{r}|t|^{2 r}, \quad \forall|t| \geqslant 1 \& \sigma \geqslant 1 .
\end{aligned}
$$

Since $1>r>0$ is cerbitrary, we have that $\forall 0<\varepsilon<2$

$$
\left|\zeta^{\prime}(s)\right| \leqslant C_{\varepsilon}|A|^{\varepsilon}, \quad \forall|A| \geqslant 1 \& \quad \sigma \geqslant 1
$$

Using $|t| \geqslant 1$, we have $\forall \varepsilon \geqslant 2$,

$$
\begin{aligned}
\left|S^{\prime}(S)\right| \leqslant C_{1}|t| \leqslant C_{1}|t|^{\varepsilon} \quad \forall|t| \geqslant 1 \& \sigma \geqslant 1 \\
\left(\hat{v}_{\text {mag } \left.r=\frac{1}{2}\right)}\right.
\end{aligned}
$$

Altogether, $\forall \varepsilon>0, \exists C_{\varepsilon}>0$ st.

$$
\left|\zeta^{\prime}(S)\right| \leqslant C_{\varepsilon}|t|^{\varepsilon}, \quad \forall|t| \geqslant 1 \& \sigma \geqslant 1
$$

This proves (is).

Ch 7 The Zeta Function and Prime Number Theorem
Def: The function $\pi(x)$ for $x>0$ is defined by

$$
\pi(x)=\text { number of primes } p \leqslant x \text {. }
$$

Prime Number Thenem

$$
\pi(x) \sim \frac{x}{\log x} \text { as } x \rightarrow \infty
$$

Recall: Asymptotic relation $f(x) \sim g(x)$ as $x \rightarrow \infty$ means

$$
\text { that } \quad \frac{f(x)}{g(x)} \rightarrow 1 \text { as } x \rightarrow \infty
$$

Goal of this Chapter: UN e S(S) to prove Prime Number Thenom.

1. Zeros of the Zeta Function

Relationship of $\zeta(s)$ to prime members:

$$
\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}}, \quad \operatorname{Re}(s)>1
$$

where the infüite product is over all primes.
Pf: Fundamental thenem of Arithmetic \Rightarrow $\forall n \in\{2,3, \cdots\}, \quad n=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$ in a minique was where p_{i} are primes \& $k_{i} \geq 0$ are integers.
\Rightarrow Fa integers $M>N$,

$$
\prod_{p \leqslant N}\left[1+\frac{1}{p^{s}}+\frac{1}{\left(p^{2}\right)^{s}} \cdots+\frac{1}{\left(p^{m}\right)^{s}}\right]=\sum_{p_{i} \leqslant N} \frac{1}{\left(p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}\right)^{s}}
$$

with $k_{i} \leqslant M$ and $m \leqslant \pi(N)$
Note that $p_{i} \geq 2 \Rightarrow \forall n \leqslant N$,

$$
n=p_{1}^{k_{1}} \ldots p_{m}^{k_{m}} \text { far some } p_{i} \leqslant N \text { and } k_{i} \leqslant M
$$

$$
\therefore \quad \prod_{p \leqslant N}\left[1+\frac{1}{p^{s}}+\frac{1}{\left(p^{2}\right)^{s}} \cdots+\frac{1}{\left(p^{M}\right)^{s}}\right] \geqslant \sum_{n=1}^{N} \frac{1}{n^{s}}
$$

On the other hand, $\sum_{p_{i} \leqslant N} \frac{1}{\left(p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}\right)^{s}}$ has only füitely many terns, we also have

$$
\prod_{p \leqslant N}\left[1+\frac{1}{p^{s}}+\frac{1}{\left(p^{2}\right)^{s}} \cdots+\frac{1}{\left(p^{M}\right)^{s}}\right] \leqslant \sum_{n=1}^{\infty} \frac{1}{n^{s}}=\zeta(s)
$$

Note that we have used the uniqueness of prime factorization.
Now by $1+\frac{1}{p^{s}}+\frac{1}{\left(p^{2}\right)^{s}} \cdots+\frac{1}{\left(p^{M}\right)^{s}}=\frac{1-\left(p^{-s}\right)^{M+1}}{1-p^{-s}}$
we have

$$
\sum_{n=1}^{N} \frac{1}{n^{s}} \leqslant \prod_{p \leqslant N} \frac{1-\left(p^{-s}\right)^{M+1}}{1-p^{-s}} \leqslant S(s)
$$

Letting $M \rightarrow \infty \quad(M>N) \Rightarrow \sum_{n=1}^{N} \frac{1}{n^{s}} \leqslant \prod_{p \leqslant N} \frac{1}{1-p^{-s}} \leqslant 3(s)$.
Letting $N \rightarrow \infty$, we proved the Relation for $s>1$. Then uniqueness of analytic continuation implies t holds far Res >1.

Thmi.1 The only zeros of $\zeta(s)$ outside $0 \leq \operatorname{Re}(s) \leq 1$, the critical strip, are $-2,-4,-6, \cdots$

Pf: $F a \operatorname{Re}(s)>1, \quad \zeta(s)=\prod_{p} \frac{1}{1-p^{-s}} \neq 0$.
$\operatorname{Fir} \operatorname{Re}(s)<0$, we use the functional equation

$$
\xi(s)=\xi(1-s),
$$

where

$$
\xi(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \xi(s)
$$

Reunite the functional equation as

$$
\zeta(s)=\frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s}{2}\right)} \cdot \pi^{-\frac{(1-s)}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s) .
$$

- $\operatorname{Re}(s)<0 \Rightarrow \operatorname{Re}(1-s)>1 \Rightarrow S(1-s) \neq 0$
- clearly $\Gamma\left(\frac{1-S}{2}\right) \neq 0$ \& $\pi^{s-\frac{1}{2}} \neq 0$
- and by The $1.6 \quad 1 / \Gamma\left(\frac{s}{2}\right)$ has zeros at $\frac{s}{2}=0,-1,-2 \ldots$ All together, the zeros of $S(s)$ in $\operatorname{Re}(s)<0$ are exactly $s=-2,-4,-6, \cdots$.

Remarks:
(i) Riemann Cypothesis: The zeros of $\zeta(5)$ in the nitical strip lie on the live $\operatorname{Re}(s)=\frac{1}{2}$.
(ii) $s=-2,-4,-6, \cdots$ are called the trivial zeros of $S(s)$.

Th $1.2 \quad \zeta(1+i t) \neq 0, \quad \forall t$
Remark: the pole $s=1$ (ie. $t=0$) is included.
The proof needs some lemmas.

Lemma 1.3 If $R(s)>1$, then

$$
\log \zeta(s)=\sum_{p, m} \frac{1}{m} p^{-s m}=\sum_{n=1}^{\infty} \frac{c_{n}}{n^{s}}
$$

for some $c_{n} \geqslant 0$.
Pf: $F a s>1$,

$$
\begin{aligned}
\log \zeta(s) & =\log \prod_{p} \frac{1}{1-p^{-s}}=\sum_{p} \log \frac{1}{1-p^{-s}} \\
& =\sum_{p} \sum_{m=1}^{\infty} \frac{1}{m}\left(p^{-s}\right)^{m} \quad\left(\text { since } \quad p^{-s}<p^{-1}<1\right)
\end{aligned}
$$

Since the double sum converges absolutely, we have

$$
\log S(S)=\sum_{p, m} \frac{1}{m} p^{-s m}
$$

Clearly, the absolute conuegence of the double sum holds fa

$$
\operatorname{Re}(s)>1 \quad\left(\left(p^{-s} \mid=p^{-\operatorname{Res}}<p^{-1}<1\right),\right.
$$

the RHS deferrer a hold. function on $R(S)>1$.
Then miqueness of analytic contrunation \Rightarrow

$$
\log \zeta(s)=\sum_{p, m} \frac{1}{m} p^{-s m} \quad \forall \operatorname{Re}(s)>1 .
$$

Note that the general term of the sum is $\frac{1}{m}\left(p^{m}\right)^{-s}$,
we have

$$
\begin{aligned}
& \log S(S)=\sum_{n=1}^{\infty} C_{n} n^{-S} \text { with } \\
& C_{n}= \begin{cases}\frac{1}{m}, & \text { if } n=p^{m} \text { fa some prime } p \\
0, \text { otherwise. }\end{cases}
\end{aligned}
$$

Lemma l. $4 \quad \forall \theta \in \mathbb{R}, \quad 3+4 \cos \theta+\cos 2 \theta \geqslant 0$
Pf: $\quad 3+4 \cos \theta+\cos 2 \theta=2(1+\cos \theta)^{2}$.

Cor 1.5 If $s=\sigma+i t$ with $\sigma>1 \& t \in \mathbb{R}$,
then $\quad \log \left|\zeta^{3}(\sigma) \zeta^{4}(\sigma+i t) \xi(\sigma+2 i t)\right| \geq 0$
Bf: $\log \left|\zeta^{3}(\sigma) \zeta^{4}(\sigma+i t) \xi(\sigma+2 i t)\right|$

$$
\begin{aligned}
& =3 \log |\zeta(\sigma)|+4 \log |\zeta(\sigma+i t)|+\lg |\zeta(\sigma+2 i t)| \\
& =3 \operatorname{Re}[\log \zeta(\sigma)]+4 \operatorname{Re}[\log \zeta(\sigma+i t)]+\operatorname{Re}[\log \zeta(\sigma+2 i t)]
\end{aligned}
$$

By Lemmal.3

$$
\begin{aligned}
& =3 \sum_{n} C_{n} \operatorname{Re}\left(n^{-\sigma}\right)+4 \sum_{n} C_{n} \operatorname{Re}\left(n^{-(\sigma+i t)}\right)+\sum_{n} C_{n} \operatorname{Re}\left(n^{-(\sigma+2 i t)}\right) \\
& =\sum_{n} C_{n}\left(3 n^{-\sigma}+4 \operatorname{Re} e^{-(\sigma+i t) \log n}+\operatorname{Re} e^{-(\sigma+2 i t) \log n}\right) \\
& =\sum_{n} C_{n}\left[3 n^{-\sigma}+4 n^{-\sigma} \cos (t \log n)+n^{-\sigma} \cos (2 t \log n)\right] \\
& =\sum_{n} C_{n} n^{-\sigma}[3+4 \cos (t \log n)+\cos (2 t \log n)]
\end{aligned}
$$

≥ 0 by lemma l.4 (\& lemma 1.3 that $c_{n} \geqslant 0$)

Pf of Chm 1.2
Suppose on the contrary that

$$
S\left(1+i t_{0}\right)=0 \quad \text { fer some } t_{0} \neq 0 .
$$

We consider the 3 factors in Cor 1.5 for $\sigma \rightarrow 1$ \& $t=t_{0}$.
Since $S(S)$ is hold. near $S=1+i t_{0}, t_{0} \neq 0$,

$$
S(s)=\left(s-\left(1+i t_{0}\right)\right)^{m} h(s) \text { near } s=1+i t_{0}
$$

with . $m \geqslant 1$

- $h(s)$ holo near $\delta=1+i t_{0}$ and $h\left(1+i t_{0}\right) \neq 0$.

Hence for some cost. $c>0$,

$$
\text { (*), }\left|\zeta\left(\sigma+i t_{0}\right)\right|^{4} \leqslant C(\sigma-1)^{4} \quad \text { as } \sigma \rightarrow 1 . \quad(\sigma>1)
$$

Then using $s=1$ is a simple pole of $\zeta(s)$, we also have

$$
(*)_{2} \quad|\zeta(\sigma)|^{3} \leqslant \frac{c_{1}}{(\sigma-1)^{3}} \quad \text { as } \quad \sigma \rightarrow 1 \quad(\sigma>1)
$$

Finally, $S(s)$ hold, near $S=1+2 i$ to,

$$
(A)_{3} \quad \mid \zeta(\sigma+\text { zit }) \mid \leqslant C_{2} \quad \text { as } \sigma \rightarrow 1 \quad(\sigma>1)
$$

Combining $(*)_{1},(*)_{2},(*)_{3}$ and Cor 1.5 , we have
which is a contradiction. The proof is coupleted.
1.1 Estimates for $1 / 5(s)$

Prop $1.6 \forall \varepsilon>0, \exists C_{\varepsilon}>0$ st.

$$
\frac{1}{|\zeta(S)|} \leqslant C_{\varepsilon}|t|^{\varepsilon} \text { for } S=\sigma+i t, \sigma \geq 1 \text { and }|t| \geq 1 \text {. }
$$

Pf: By Cor 1.5 and $\zeta(S)$ only has a pole at $S=1$, we have

$$
\left|\zeta^{3}(\sigma) \zeta^{4}(\sigma+i t) \zeta(\sigma+z i t)\right| \geqslant 1, \quad \forall \sigma \geqslant 1
$$

By Prop 2.7 (i) of $\mathrm{CH} 6, \quad\left(\right.$ taking $\left.\sigma_{0}=1\right)$

$$
|\zeta(\sigma+2 i t)| \leqslant C_{1}|t|^{\varepsilon} \quad \forall \sigma \geqslant 1 \&|t| \geqslant 1 . \quad\left(C_{1}=C_{1}(\varepsilon)>0\right)
$$

Hence

$$
1 \leqslant\left|\zeta^{3}(\sigma) \zeta^{4}(\sigma+i t)\right| \cdot c_{1}|t|^{\varepsilon}
$$

Then similar to $(*)_{2}$ in the proof of The 1.2,

$$
\left|\zeta^{3}(\sigma)\right| \leqslant \frac{c_{2}}{(\sigma-1)^{3}} \quad \text { fa } \sigma>1 . \quad\left(c_{3}=c_{3}(\varepsilon)>0\right)
$$

Hence $\left|S^{4}(\sigma+i t)\right| \geqslant \frac{C_{3}(\sigma-1)^{3}}{|t|^{\varepsilon}} \quad \forall \sigma>1 \Delta|t| \geqslant 1$ and clearly this inequality trivially holds fur $\sigma=1$.
Hence
(3)

$$
\begin{aligned}
&|\zeta(\sigma+i t)| \geqslant c_{4}(\sigma-1)^{\frac{3}{4}}|t|^{-\frac{\varepsilon}{4}}, \quad \forall \sigma \geqslant 1 \&|t| \geqslant 1 \\
&\left(c_{4}=c_{4}(\varepsilon)>0\right)
\end{aligned}
$$

Note that by Prop 2.7 (iii) of Chr, we have for $\sigma^{\prime}>\sigma \geqslant 1$,

$$
\begin{aligned}
\left|\zeta\left(\sigma^{\prime}+i t\right)-\zeta(\sigma+i t)\right| & \leqslant\left|\zeta^{\prime}\left(\sigma_{c}+i t\right)\right|\left|\sigma^{\prime}-\sigma\right| \quad \text { fa sauce } \sigma \leqslant \sigma_{c} \leqslant \sigma^{\prime} \\
& \leqslant C_{5}|t|^{\varepsilon}\left|\sigma^{\prime}-\sigma\right| \quad\left(C_{5}=C_{5}(\varepsilon)>0\right) \\
& \leqslant C_{5}\left(\left.t\right|^{\varepsilon}\left(\sigma^{\prime}-1\right) . \quad\left(\sigma^{\prime}>\sigma \geqslant 1\right)\right.
\end{aligned}
$$

Let $A=\left(\frac{c_{4}}{2 C_{5}}\right)^{4}>0$.
Che $1 \quad \sigma-1 \geqslant A|t|^{-5 \varepsilon}$

$$
\text { Then } \begin{aligned}
(3) \Rightarrow|\zeta(\sigma+i t)| & \geq C_{4}\left(A|t|^{-5 \varepsilon}\right)^{\frac{3}{4}}|t|^{-\frac{\varepsilon}{4}} \\
& \left.\left.=\left(C_{4} A^{\frac{3}{4}}\right) \right\rvert\, t\right)^{-4 \varepsilon}
\end{aligned}
$$

Case $2 \quad \sigma-1<A|t|^{-5 \varepsilon}$
Take $\sigma^{\prime}>\sigma$ such that $\sigma^{\prime}-1=A|t|^{-5 \varepsilon}$.
Then triangle inequality \Rightarrow

$$
\begin{aligned}
|\zeta(\sigma+i t)| & \geqslant\left|\zeta\left(\sigma^{\prime}+i t\right)\right|-\left|\zeta\left(\sigma^{\prime}+i t\right)-\zeta(\sigma+i t)\right| \\
& \geqslant C_{4}\left(\sigma^{\prime}-1\right)^{\frac{3}{4}}|t|^{-\frac{\varepsilon}{4}}-C_{5}|t|^{\varepsilon}\left(\sigma^{\prime}-1\right) \\
& =\left[C_{4}\left(\sigma^{\prime}-1\right)^{-\frac{1}{4}}|t|^{-\frac{\varepsilon}{4}}-C_{5}|t|^{\varepsilon}\right]\left(\sigma^{\prime}-1\right) \\
& =\left[C_{4} \frac{1}{\left(A|t|^{-5 \varepsilon}\right)^{\frac{1}{4}}}|t|^{-\frac{\varepsilon}{4}}-C_{5}|t|^{\varepsilon}\right]\left(\sigma^{\prime}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[C_{4} \cdot \frac{2 C_{5}}{C_{4}} \cdot|t|^{\varepsilon}-C_{5}|t|^{\varepsilon}\right]\left(\sigma^{\prime}-1\right) \\
& =C_{5}|t|^{\varepsilon}\left(\sigma^{\prime}-1\right) \\
& =C_{5} A|t|^{-4 \varepsilon}
\end{aligned}
$$

Hence $\forall \varepsilon>0, \quad|\zeta(\sigma+i t)| \geqslant C_{\varepsilon}|t|^{-4 \varepsilon}$
where $C_{\varepsilon}=\min \left\{C_{4} A^{\frac{3}{4}}, C_{5} A\right\}$.

Replacing 4ε by ε, we have

$$
|\zeta(\sigma+i t)| \geqslant C_{\varepsilon}|t|^{-\varepsilon} \text { with a new } C_{\varepsilon} \text {. }
$$

