\$2 The Zeta Function
Def: The Riemann Zeta Function fur $s>1(s \in \mathbb{R})$ is defined by $\quad S(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$
2.1 Functional Equation \& Analytic Continuation

Prop 2.1 $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ converges for $\operatorname{Re}(s)>1$, and holomaphic in $\{S: \operatorname{Re}(S)>1\}$
$P f:$ Let $s=\sigma+i t \quad(\sigma, t \in \mathbb{R})$.
Then $\quad\left|\frac{1}{n^{s}}\right|=e^{\operatorname{Re}(-S \log n)}=e^{-\sigma \log n}=\frac{1}{n^{\sigma}}$
$\Rightarrow \forall \delta>0$, then $f a r>1+\delta$,

$$
\left|\frac{1}{n^{s}}\right| \leqslant \frac{1}{n^{1+\delta}} \text { and } \sum_{n=1}^{\infty} \frac{1}{n^{1+\sigma}}<+\infty \Rightarrow
$$

the series $\quad S(S)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ converges absoutaty uniformly and hence defüue a hobo. function on $\{S=\sigma t i t=\sigma\rangle 1+\delta\}$. Since $\delta>0$ is arbitrary, $\zeta(s)$ is defüred and holomenplic on $\quad\{S=\sigma+i t=\sigma>1\}$.

Recall: The Theta Function defined for $t>0$ by

$$
V(t)=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} t}
$$

satisfies $v(t)=t^{-\frac{1}{2}} \varphi\left(\frac{1}{t}\right)$
(Application (1) of Poisson summation formula)
(Ohm 2.4 in Ch 4)
Note that $\quad V(t)-1=2 \sum_{n=1}^{\infty} e^{-\pi n^{2} t}$

$$
\Rightarrow \quad|\theta(t)-1|<z \sum_{n=1}^{\infty}\left(e^{-\pi t}\right)^{n}=\frac{2 e^{-\pi t}}{1-e^{-\pi t}} \quad\left(f_{a} t>0\right)
$$

Hence $\exists C>0$ sit.

$$
|O(t)-1| \leqslant c e^{-\pi t} \quad \text { far } t \geqslant 1 .
$$

Then $\quad \mathcal{g}(t) \leq t^{-\frac{1}{2}}\left(1+C e^{-\frac{\pi}{t}}\right)$ for $t<1$

$$
\leqslant C t^{-\frac{1}{2}} \quad \text { as } \quad t \rightarrow 0 .
$$

In summary

$$
\left\{\begin{array}{l}
v(t) \leqslant C t^{-\frac{1}{2}} \text { cos } t \rightarrow 0 \\
|v(t)-1| \leqslant C e^{-\pi t} \text { cos } t \rightarrow \infty
\end{array}\right.
$$

The 2.2 If $\operatorname{Re}(s)>1$, then

$$
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\frac{1}{2} \int_{0}^{\infty} u^{\frac{s}{2}-1}(\vartheta(u)-1) d u
$$

Pf: By properties summarized above, for $\operatorname{Re} s>1$

$$
\begin{aligned}
\left|u^{\frac{S}{2}-1}(V(u)-1)\right| & \leqslant u^{\frac{\operatorname{Re} s}{2}-1}|D(u)-1| \\
& \leqslant \begin{cases}C u^{\frac{\operatorname{Res}-1}{2}-1} & \text { as } u \rightarrow 0 \\
C u^{\frac{\operatorname{ses}-1}{2}-1} e^{-\pi u} & \text { as } u \rightarrow \infty\end{cases}
\end{aligned}
$$

$\therefore \frac{1}{2} \int_{0}^{\infty} u^{\frac{s}{2}-1}(\theta(u)-1) d u$ converges absolutely
and hence

$$
\begin{aligned}
& =\int_{0}^{\infty} u^{\frac{s}{2}-1}\left(\frac{\vartheta(u)-1}{2}\right) d u \\
& =\int_{0}^{\infty} u^{\frac{s}{2}-1}\left(\sum_{n=1}^{\infty} e^{-\pi n^{2} u}\right) d u \\
& =\sum_{n=1}^{\infty} \int_{0}^{\infty} u^{\frac{s}{2}-1} e^{-\pi n^{2} u} d u \\
& =\sum_{n=1}^{\infty} \int_{0}^{\infty}\left(\frac{t}{\pi n^{2}}\right)^{\frac{s}{2}-1} e^{-t} \cdot \frac{d t}{\pi n^{2}} \\
& =\sum_{n=1}^{\infty} \frac{1}{\left.\pi n^{2}\right)^{s / 2}} \int_{0}^{\infty} e^{-t} t^{\frac{s}{2}-1} d t \\
& =\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \sum_{n=1}^{\infty} \frac{1}{n^{s}} \\
& =\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s) \quad \not x
\end{aligned}
$$

$$
\binom{\text { change of voidable }}{u=\frac{t}{\pi n^{2}}}=\sum_{n=1}^{\infty} \int_{0}^{\infty}\left(\frac{t}{\pi n^{2}}\right)^{\frac{s}{2}-1} e^{-t} \cdot \frac{d t}{\pi n^{2}}
$$

Def The $\underline{X_{i} F u n c t i o n ~} \xi(s)$ is defined by

$$
\xi(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

Thu2.3 - $\xi(s)$ is hold. for $\mathrm{Re}(s)>1$

- $\xi(s)$ has analytic continuation as a meromaphic function to \mathbb{C} with simple poles at $S=0$ \& $S=1$.
(with $\left.r e s_{s=0} \xi(s)=-1, r e s_{s=1} \xi(s)=1\right)$
- Aud

$$
\xi(s)=\xi(1-s), \forall s \in \mathbb{C} \backslash\{0,1\}
$$

Pf: To simplify notation, let $\psi(u)=\frac{1}{2}(\vartheta(u)-1)$.
Then $V(u)=1+24(u)$

$$
\begin{aligned}
\Rightarrow \quad 1+2 \psi(u) & =\vartheta(u)=u^{-\frac{1}{2}} v\left(\frac{1}{u}\right) \\
& =u^{-\frac{1}{2}}\left(1+2 \psi\left(\frac{1}{u}\right)\right) \\
\therefore \quad \psi(u) & =u^{-\frac{1}{2}} \psi\left(\frac{1}{u}\right)+\frac{1}{2 u^{\frac{1}{2}}}-\frac{1}{2} \quad, \forall u \in(0, \infty)
\end{aligned}
$$

By The 2.2, fr $\operatorname{Re} s>1$, we have

$$
\begin{aligned}
\xi(s) & =\int_{0}^{\infty} u^{\frac{s}{2}-1} \psi(u) d u \\
& =\int_{0}^{1} u^{\frac{s}{2}-1}\left[u^{-\frac{1}{2}} \psi\left(\frac{1}{u}\right)+\frac{1}{2 u^{\frac{1}{2}}}-\frac{1}{2}\right] d u+\int_{1}^{\infty} u^{\frac{s}{2}-1} \psi(u) d u
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{2} \int_{0}^{1} u^{\frac{s-1}{2}-1} d u-\frac{1}{2} \int_{0}^{1} u^{\frac{s}{2}-1} d u \\
& +\int_{0}^{1} u^{\frac{s}{2}-\frac{3}{2}} \psi\left(\frac{1}{u}\right) d u+\int_{1}^{\infty} u^{\frac{s}{2}-1} \psi(u) d u \\
= & \frac{1}{2}\left[\frac{u^{\frac{s-1}{2}}}{\frac{s-1}{2}}\right]_{0}^{1}-\frac{1}{2}\left[\frac{u^{\frac{s}{2}}}{\frac{s}{2}}\right]_{0}^{1}+\int_{\infty}^{1} u^{-\frac{s}{2}+\frac{3}{2}} \psi(u)\left(-\frac{d u}{u^{2}}\right) \\
& +\int_{1}^{\infty} u^{\frac{s}{2}-1} \psi(u) d u \\
\therefore \quad \xi(s)= & \frac{1}{s-1}-\frac{1}{s}+\int_{1}^{\infty}\left(u^{-\frac{s}{2}-\frac{1}{2}}+u^{\frac{s}{2}-1}\right) \psi(u) d u \tag{*}
\end{align*}
$$

Note that $|\psi(u)|=\frac{1}{2}|\vartheta(u)-1| \leqslant C e^{-\pi u}$ as $u \rightarrow+\infty$ $\therefore \quad \int_{1}^{\infty}\left(u^{-\frac{s}{2}-\frac{1}{2}}+u^{\frac{s}{2}-1}\right) \psi(u) d u$ converges absolutely fa all $s \in \mathbb{C}$ (not just $R e s>1$) and doftues an entire function. Hence the RHS of (t) is a meromorphic function with simple poles at $S=0$ \& $S=1$ (with corresponding residues). This proves the first two statements. For the last famula, substitute 1-s in $(*)$, we have

$$
\begin{aligned}
\xi(1-s) & =\frac{1}{(1-s)-1}-\frac{1}{(1-s)}+\int_{1}^{\infty}\left(u^{-\frac{1-s}{2}-\frac{1}{2}}+u^{\frac{1-s}{2}-1}\right) \psi(u) d u \\
& =-\frac{1}{s}+\frac{1}{s-1}+\int_{1}^{\infty}\left(u^{\frac{s}{2}-1}+u^{-\frac{s}{2}-\frac{1}{2}}\right) \psi(u) d u \\
& =\xi(s) .
\end{aligned}
$$

