1.1 Analytic Continuation

Lemma l. 2 If $\operatorname{Re}(s)>0$, then

$$
\begin{equation*}
\Gamma(s+1)=s \Gamma(s) . \tag{2}
\end{equation*}
$$

Hence $\Gamma(n+1)=n!$ for $n=0,1,2,3, \ldots$
Pf: $\operatorname{Fa} \operatorname{Re}(s)>0$,

$$
\begin{aligned}
\Gamma(s+1) & =\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\frac{1}{\varepsilon}} e^{-t} t^{s} d t \\
& =\lim _{\varepsilon \rightarrow 0}\left\{\left[-e^{-t} t^{s}\right]_{\varepsilon}^{\frac{1}{\varepsilon}}+\int_{\varepsilon}^{\frac{1}{\varepsilon}} e^{-t} \cdot s t^{s-1} d t\right\} \\
& =\lim _{\varepsilon \rightarrow 0}\left[\left(e^{-\varepsilon} \varepsilon^{s}-e^{-\frac{1}{\varepsilon}}\left(\frac{1}{\varepsilon}\right)^{s}\right)+s \int_{\varepsilon}^{\frac{1}{\varepsilon}} e^{-t} t^{s-1} d t\right] \\
& =s \Gamma(s),
\end{aligned}
$$

Suite $\mathrm{Pe}(\mathrm{s})>0 \Rightarrow$

$$
\left\{\begin{array}{l}
\left|e^{-\varepsilon} \varepsilon^{s}\right|=e^{-\varepsilon} \varepsilon^{\operatorname{Re}(s)} \rightarrow 0 \\
\left|e^{-\frac{1}{\varepsilon}}\left(\frac{1}{\varepsilon}\right)^{s}\right|=e^{-\frac{1}{\varepsilon}}\left(\frac{1}{\varepsilon}\right)^{\operatorname{Re}(s)} \rightarrow 0
\end{array} \quad \text { as } \varepsilon \rightarrow 0\right.
$$

This proves formula (2).
By fameela (2), if $n \geqslant 1$, then

$$
\begin{aligned}
\Gamma(n+1) & =n \Gamma(n)=\cdots=n(n-1) \cdots 1 \cdot \Gamma(1) \\
& =n!\Gamma(1) .
\end{aligned}
$$

And $\Gamma(1)=\int_{0}^{\infty} e^{-t} t^{1-1} d t=\int_{0}^{\infty} e^{-t} d t=1$

$$
\therefore \quad \Gamma(n+1)=n!\quad(n \geq 1)
$$

For $n=0, \quad \Gamma(0+1)=1=0$! by defurition.

The 1.3 The gamma function $\Gamma(s)$ defined $f_{a} \operatorname{Re}(s)>0$ has an analytic continuation to a meromaphic function on \mathbb{C} whose only singularities are simple poles at $s=0,-1,-2, \cdots$ with residue

$$
\operatorname{res}_{s=-n} \Gamma(s)=\frac{(-1)^{n}}{n!}
$$

Remark: Süce $\mathbb{C} \backslash\{0,-1,-2, \cdots\}$ is connected, the analytic continuation of $\Gamma(S)$ is unique (by Thu $4.82 \operatorname{Con} 4.9$ of (42). Therefue, it is convenient to denoted this analytic continuation by $\Gamma(s)$ again. So after proving this Theaeen, the gamma function $\Gamma(s)$ is a meromaphic function on \mathbb{C}.

Pf: $F_{a} \operatorname{Re}(s)>-1$, define

$$
F_{1}(s)=\frac{\Gamma(s+1)}{s}
$$

Since $\Gamma(s)$ nolo in $\operatorname{Re}(s)>0$,
$\Gamma(S+1)$ colo in $\operatorname{Re}(S)>-1$,
and hence $F_{1}(S)=\frac{\Gamma(S+1)}{S}$ is meromaphic in $R(S)>-1$ wish a simple pole at $S=0$ with

$$
\operatorname{res}_{s=0} F_{1}(s)=\Gamma(0+1)=1
$$

Note that Lemma $1.2 \Rightarrow F_{1}(s)=\frac{\Gamma(s+1)}{s}=\Gamma(s)$ far $\operatorname{Re}(s)>0$, $F_{1}(s)$ is an analytic conturcration of $\Gamma(s)$ to a mere. function an $\{s \in \mathbb{C}: \operatorname{Re}(s)>-1\}$.

Same argument wats far $\operatorname{Re}(S)>-m$ by defining

$$
F_{m}(S)=\frac{\Gamma(S+m)}{(S+m-1)(s+m-2) \cdots s}
$$

Clearly $F_{m}(S)$ is meronurphic in $\operatorname{Re}(S)>-m(\Rightarrow \operatorname{Re}(S+m)>0)$ with simple poles at $S=0,-1, \cdots ;-(m-1)$, and for $n=0,1, \cdots, n-1$

$$
\operatorname{res}_{s=-n} F_{m}(s)=\frac{\Gamma(-n+m)}{(-n+m-1)(-n+m-2) \cdots(1)(-1)(-2) \cdots(-n)} \quad \begin{aligned}
& \text { the term } \\
& \text { correspondoy to } \\
& \text { the price }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\Gamma(m-n)}{(m-n-1)!(-1)^{n} n!} \\
& =\frac{(-1)^{n}}{n!} \quad \text { by Lemma } 1,2 .
\end{aligned}
$$

And far $\operatorname{Re}(S)>0$,

$$
\begin{aligned}
F_{m}(S) & \left.=\frac{\Gamma(S+m)}{(S+m-1)(s+m-2) \cdots s}=\frac{(s+m-1) \Gamma(S+m-1)}{(s+m-1)(S+m-2) \cdots s} \quad \text { (by Lemma } 1,2\right) \\
& =F_{m-1}(S) \cdots=F_{1}(s)=\Gamma(S)
\end{aligned}
$$

$\therefore F_{m}(s)$ is an analytic continuation of $\Gamma(s)$ to $\{\operatorname{Pe}(s)>-m\}$.
Then uniqueness of theorem \Rightarrow if $m>n$, then

$$
F_{m}(s)=F_{n}(s) \quad \text { for } \quad \operatorname{Re}(s)>-n
$$

Therefae, one can defüre meromaphic function $F(S)$ on \mathbb{C} by $\quad F(s) \stackrel{\text { def }}{=} F_{m}(s)$ if $\operatorname{Re}(s)>-m$.

Clearly, thees gives the required analytic continuation.

Remarks: (1) Clearly $\lim _{s \rightarrow 0} s \Gamma(s)=\Gamma(1)=1$
(2) $\Gamma(s+1)=s \Gamma(s)$ holds fa $s \in \mathbb{C} \backslash\{-1,-2, \cdots\}$. Pf: LHS hold. except $S+1=0,-1,-2, \cdots$

RHS holo. except $S=-1,-2, \ldots$
$\binom{$ since $S=0$ is a simple pole hence it is }{ reumorable fu RHS. }
And on $\{\operatorname{Re}(s)>0\}$, LHS $=$ RHS. Therfae mingueness thm $\Rightarrow L H S \equiv$ RHS on $\mathbb{C}\{\{-1,-2, \cdots\}$.
(3) $\operatorname{res}_{s=-n} \Gamma(s+1)=-n \operatorname{res}_{s=-n} \Gamma(s) \quad(n=1,2,3, \cdots)$

Pf: Rear $s=-(n-1)$,

$$
\begin{gathered}
\Gamma(s)=\frac{\frac{(-1)^{n-1}}{(n-1)!}}{s+(n-1)}+h_{\text {olo }}(s) \\
\Rightarrow \quad \Gamma(s+1)=\frac{\frac{(-1)^{n-1}}{(n-1)!}}{s+n}+h o l o(s+1) \\
\therefore \quad r e s_{s=-n} \Gamma(s+1)=\frac{(-1)^{n-1}}{(n-1!}=-n \cdot \operatorname{res}_{s=-n} \Gamma(s) .
\end{gathered}
$$

Alternationg Proof of Thm 1.3: $\forall s \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$,

$$
\begin{equation*}
\Gamma(s)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+s}+\int_{1}^{\infty} e^{-t} t^{s-1} d t \tag{3}
\end{equation*}
$$

Pf: We 1 st show (3) for $\operatorname{Re}(s)>0$.
By Prop 1. 1 and famula (1 , far $\operatorname{Re}(s)>0$,

$$
\begin{aligned}
\Gamma(s) & =\int_{0}^{\infty} e^{-t} t^{s-1} d t \\
& =\int_{0}^{1} e^{-t} t^{s-1} d t+\int_{1}^{\infty} e^{-t} t^{s-1} d t
\end{aligned}
$$

Fr $t \in(0,1), \quad e^{-t}=\sum_{n=0}^{\infty} \frac{(-t)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} t^{n}$
By absolute convergence of the improper integral and wifam convergence of the series, we have

$$
\begin{aligned}
\int_{0}^{1} e^{-t} t^{s-1} d t & =\int_{0}^{1}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} t^{n}\right) t^{s-1} d t \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{1} t^{n+s-1} d t \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+s} \\
\therefore \quad \Gamma(s) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+s}+\int_{1}^{\infty} e^{-t} t^{s-1} d t, \quad \forall \operatorname{Res}>0
\end{aligned}
$$

Now clearly $\int_{1}^{\infty} e^{-t} t^{s-1} d t$ is an entire function because of the exponential decay (Ex!).

Fou the series, consider any $R>0$ and any $N>2 R$

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+S}=\sum_{n=0}^{N} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+S}+\sum_{n=N+1}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+S}
$$

$\sum_{n=0}^{N} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+s}$ is a meromorphic function in $\{|S|<R\}$ with poles at

$$
k \in\{0,-1,-2, \cdots,-N\} \cap\{k:|k|<R\}
$$

$\sum_{n=N+1}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+s}$ has general tame

$$
\left|\frac{(-1)^{n}}{n!} \cdot \frac{1}{n+s}\right| \leqslant \frac{1}{n!} \cdot \frac{1}{R}
$$

since $n>N>2 R$ and $|S|<R$

$$
\Rightarrow \quad|n+s|>R
$$

$\therefore \quad \sum_{n=N+1}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+s}$ misfamily converges to a holomaphic function in $\{|S|<R\}$.
Since $R>0$ is arbitrary,
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+s}+\int_{1}^{\infty} e^{-t} t^{s-1} d t$ defines a meromophic
function with simple poles at $S=\{0,-1,-2, \ldots\}$ with res ${ }_{s=-n}=\frac{\left(-D^{n}\right.}{n!}$.

Since it $=\Gamma(s)$ fur Res>0, we've proved (3), $\forall s \in \mathbb{C}(\{0,-1, \cdots\}$.
1.2 Further Properties of $\Gamma(s)$

Th 1.4 $\forall s \in \mathbb{C} \backslash \mathbb{Z}$

$$
\begin{equation*}
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s} \tag{4}
\end{equation*}
$$

Remark:
(1) $\quad s \mapsto 1-s$
is the reflection across $\frac{1}{2}$

(2) Thu $1.4 \Rightarrow \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. (Since $\left.\Gamma(s)>0, \forall s>0\right)$
$P f=$ Note that $\Gamma(s)$ metro. with simple poles at $S=0,-1,-2, \ldots$
$\Rightarrow \Gamma(1-s)$ mero, with simple poles at $s=1,2,3, \cdots$
$\therefore \quad \Gamma(S) \Gamma(1-s)$ is mero, wist simple poles at $s \in \mathbb{Z}$.
Clearly, $\frac{\pi}{\sin \pi z}$ is also mero. with simple poles at $s \in \mathbb{Z}$.
Therefore, by cmnectedress of $\mathbb{C} \backslash \mathbb{Z}$, it suffices to show that

$$
\Gamma(s) \Gamma(l-s)=\frac{\pi}{\sin \pi z}
$$

on a subset of $\mathbb{C} \backslash \mathbb{Z}$ with accumulation points.
Note that far $0<S<1$ (a subset with accumulation points)

$$
\begin{aligned}
\Gamma(1-s) & =\int_{0}^{\infty} e^{-u} u^{(1-s)-1} d u \quad \text { (} \begin{aligned}
\text { changed the } \\
\text { of the dur }
\end{aligned} \\
& =\int_{0}^{\infty} e^{-u} u^{-s} d u \\
& =S_{0}^{\infty} e^{-t v}(t v)^{-s} t d v \quad \forall t>0 \\
\Rightarrow \Gamma(1-s) \Gamma(s) & =\Gamma(1-s) \int_{0}^{\infty} e^{-t} t^{s-1} d t \\
& =\int_{0}^{\infty} e^{-t} t^{s-1} \Gamma(1-s) d t \\
& =\int_{0}^{\infty} e^{-t} t^{s-1}\left(\int_{0}^{\infty} e^{-t v}(t v)^{-s} t d v\right) d t \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-t(1+v)} v^{-s} d v d t \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-t(1+v)} d t\right) v^{-s} d v
\end{aligned}
$$

(exponential decay at $t, v \rightarrow \infty$ and integrability of $\int_{0}^{1} v^{-s} d s(0<s<1)$
\Rightarrow integrals cere absolutely integrable and fence
Fubini theaem applies.)

$$
\begin{aligned}
\therefore \Gamma(1-s) \Gamma(s) & =\int_{0}^{\infty} \frac{1}{1+v} v^{-s} d v \\
& =\int_{-\infty}^{\infty} \frac{e^{(1-s) x}}{1+e^{x}} d x \\
(\text { using } 0<s<1) & =\frac{\pi}{\sin \pi(1-s)} \quad \quad \begin{array}{c}
\text { by Eg } 2 \text { of }\{2.1 \text { of ch } 3 \text { of the Text } \\
\Leftrightarrow 0<1-s<1 \\
\text { page } 79
\end{array} \\
& =\frac{\pi}{\sin \pi s}
\end{aligned}
$$

Therfae, miequeness tho $\Rightarrow \Gamma(1-s) \Gamma(s)=\frac{\pi}{\operatorname{sun} \pi s}, \forall s \in \mathbb{C} \backslash \mathbb{Z}$.

Thy 1.6 (i) $1 / \Gamma(s)$ is an entire function of s wish supple zeros at $s=0,-1,-2, \cdots$ \&

$$
1 / \Gamma(s) \neq 0 \text { for } s \in \mathbb{C} \backslash\{0,-1,-2, \cdots\} \text {. }
$$

(ii) $\left|\frac{1}{\Gamma(s)}\right| \leqslant c_{1} e^{c_{2}|s| \log |s|}$, for some constants $c_{1}, c_{2}>0$.
$\Rightarrow 1 / \Gamma(s)$ is of order 1:

$$
\forall \varepsilon>0, \exists c=c(\varepsilon)>0 \text { sit. } \quad\left|\frac{1}{\Gamma(s)}\right| \leqslant c(\varepsilon) e^{c_{2}|s|^{1+\varepsilon}}
$$

Pf: $\quad B y$ The 1.4, $\quad \frac{1}{\Gamma(s)}=\Gamma(1-s) \frac{\sin \pi s}{\pi}$
Note that $\Gamma(1-S)$ has simple poles at $S=1,2,3, \cdots(1-S=0,-1,-2, \cdots)$ and sums has simple zeros at $s=1,2,3, \cdots$

So $S=1,2,3, \cdots$ are removable singularities for $1 / \Gamma(s)$.
Together with the fact the Γ has no other singularity, $\frac{1}{\Gamma(S)}$ is entire,
and vanishing only at $\delta=0,-1,-2, \ldots$ (the simple poles of $\Gamma(s)$). This proves (i).

To prove (ii), we are going to use formula (3) (alternative proof of Thu 1.3)

$$
\Gamma(S)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+s}+\int_{1}^{\infty} e^{-t} t^{s-1} d t
$$

which implies

$$
\Gamma(1-s)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+1-s}+\int_{1}^{\infty} e^{-t} t^{-s} d t
$$

and hence

$$
\frac{1}{\Gamma(s)}=\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+1-s}\right) \frac{\sin \pi s}{\pi}+\left(\int_{1}^{\infty} e^{-t} t^{-s} d t\right) \frac{\sin \pi s}{\pi}
$$

For simplicity, let $\sigma=\operatorname{Re} S$.
Then

$$
\left|\int_{1}^{\infty} e^{-t} t^{-S} d t\right| \leqslant \int_{1}^{\infty} e^{-t} t^{-\sigma} d t \leqslant \int_{1}^{\infty} e^{-t} t^{|\sigma|} d t
$$

Choose $n \in \mathbb{N}$ st. $\quad|\sigma| \leqslant n \leqslant|\sigma|+1$.
Then

$$
\begin{aligned}
\int_{1}^{\infty} e^{-t} t^{|\sigma|} d t & \leqslant \int_{1}^{\infty} e^{-t} t^{n} d t \leqslant \int_{0}^{\infty} e^{-t} t^{n} d t \\
& =\Gamma(n+1)=n!\quad(\text { Lemma } 1.2) \\
& \leqslant n^{n}=e^{n \log n} \\
& \leqslant e^{(|||+|) \log (|\sigma|+1)} \leqslant e^{(|s|+\mid) \log (| ||+|)}
\end{aligned}
$$

We also have $|\sin \pi s| \leqslant e^{\pi|s|} \quad$ (eq 1 of $\xi 2$ of $(h 5$).
\therefore The $2^{\text {nd }}$ term of $1 / \Gamma(s)$ has bound

$$
c e^{((s \mid+1) \log (|s|+1)} \cdot e^{\pi|s|} \leqslant c_{1} e^{c_{2}|s| \log |s|}
$$

for some constants $c_{1}, c_{2}>0$. (Ex!)

For the $1^{s t} \operatorname{term}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+1-s}\right) \frac{\sin \pi s}{\pi}$:
Case $1 \quad|\operatorname{Im}(s)|>1$
Then $|n+|-s| \geqslant|\operatorname{Ims}|>1$,

$$
\left|\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{1}{n+1-5}\right| \leqslant \sum_{n=0}^{\infty} \frac{1}{n!}=e
$$

\therefore The |st tern $\leqslant c e^{\pi|s|}$ for some $c>0$.

Case $2 \quad|\operatorname{Im}(s)| \leqslant 1$.
Choose $k \in \mathbb{Z}$ sot. $k-\frac{1}{2} \leqslant \operatorname{Re}(S)<k+\frac{1}{2}$.
If $k \geqslant 1$,

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+1-s}\right) \frac{\sin \pi s}{\pi} & =\frac{(-1)^{k-1}}{(k-1)!} \cdot \frac{1}{k-s} \frac{\sin \pi s}{\pi} \quad(k=n+1) \\
& +\sum_{n \neq k-1} \frac{(-1)^{n}}{n!} \frac{1}{n+1-s} \cdot \frac{\sin \pi s}{\pi}
\end{aligned}
$$

Note $\left|\frac{(-1)^{k-1}}{(k-1)!} \frac{1}{k-S} \frac{\sin \pi S}{\pi}\right| \leqslant C$ since $\frac{\sin \pi s}{k-S}$ has removable singularity at $s=k \quad\left(k-\frac{1}{2} \leqslant \operatorname{Re} s \leqslant k+\frac{1}{2} \quad \& \quad\left|I_{m}(s)\right| \leqslant 1\right)$ (C is independent of k or S since $|\sin \pi S|$ is periodic)
and $\left|\sum_{n \neq k-1} \frac{(-1)^{n}}{n!} \frac{1}{n+1-S} \cdot \frac{\sin \pi s}{\pi}\right|$

$$
\leqslant 2 \sum_{n=0}^{\infty} \frac{1}{n!} \frac{|\sin \pi s|}{\pi}
$$

$$
\left|n+|-s| \geq \frac{1}{2}, \forall n \neq k-1\right.
$$

$\leqslant C$
since $|\operatorname{Im} S| \leqslant 1$ (\& periodic of $\sin \pi S)$.

If $k \leqslant 0$, then $k-\frac{1}{2} \leqslant \operatorname{Re} S \leqslant k+\frac{1}{2} \Rightarrow \operatorname{Re} S \leqslant \frac{1}{2}$.

$$
\begin{aligned}
& \Rightarrow \quad|n+1-s| \geq \frac{1}{2}, \quad \forall n=0,1,2, \cdots \\
& \Rightarrow \quad\left|\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \cdot \frac{1}{n+1-s} \cdot \frac{\sin \pi s}{\pi}\right| \leqslant 2 \sum_{n=0}^{\infty} \frac{1}{n!} \frac{|\sin \pi s|}{\pi} \leqslant C
\end{aligned}
$$

since $|\operatorname{Im} S| \leqslant 1(\&$ periodic of sin $\pi S)$.
All together

$$
\begin{aligned}
1 / \Gamma(S) & \leqslant C e^{\pi|s|}+c_{1} e^{c_{2}|s| \log |s|} \\
\Rightarrow \quad & \frac{1}{\Gamma(S)} \leqslant c_{1} e^{c_{2}|s| \log |s|} \quad\left(\text { maybe fou new } C_{1}, c_{2}>0\right)
\end{aligned}
$$

This proves the ${ }^{15 t}$ statement of (ii).
The $2^{\text {nd }}$ statement of (ii) follows from $|s| \log |s| \leqslant C|s|^{1+\varepsilon}, \forall \varepsilon>0$, and $\quad \sum \frac{1}{n^{\sigma}}$ converges $\Leftrightarrow \sigma>1$, and Thmzl of $\delta 2$ of Chs. (Ex!)

Thm 1.7 $\forall s \in \mathbb{C}$

$$
\frac{1}{\Gamma(s)}=e^{\gamma s} s \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-\frac{s}{n}}
$$

where $\gamma=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\log N\right)$ is the Euler's const.

Pf: By Hadamard factrization therem (Thm 5.1 in 55 of Ch5) \& Thm 1.6,

$$
\frac{1}{\Gamma(s)}=e^{A s+B} s \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-\frac{s}{n}}
$$

By remark (1) after the proof of Then $1.3, \quad \lim _{s \rightarrow 0} S \Gamma(s)=1$.

$$
\begin{array}{ll}
\Rightarrow & \left.1=e^{B} \text {, ie } B=0 \text { (or } B=2 \pi i k, k \in Z\right) \\
\therefore & \frac{1}{\Gamma(S)}=e^{A s} S \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-\frac{s}{n}}
\end{array}
$$

Putting $S=1$, we have

$$
\begin{gathered}
1=\frac{1}{\Gamma(1)}=e^{A} \prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right) e^{-\frac{1}{n}} \\
\Rightarrow e^{-A}=\lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left(1+\frac{1}{n}\right) e^{-\frac{1}{n}}=\lim _{N \rightarrow \infty} \prod_{n=1}^{N} e^{\log \left(1+\frac{1}{n}\right)-\frac{1}{n}}
\end{gathered}
$$

\Rightarrow far some $k \in \mathbb{Z}$,

$$
-A+2 \pi i k=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left[\log \left(\frac{n+1}{n}\right)-\frac{1}{n}\right]
$$

$$
\begin{aligned}
&=\lim _{N \rightarrow \infty}\left(\log \frac{2}{1}+\log \frac{3}{2}+\cdots+\log \frac{N}{N-1}+\log \frac{N+1}{N}\right)-\sum_{n=1}^{N} \frac{1}{n} \\
&=-\lim _{N \rightarrow \infty}\left[\left(\sum_{n=1}^{N} \frac{1}{n}-\log N\right)-\log \left(1+\frac{1}{N}\right)\right] \\
&=-\gamma \\
& \therefore \quad \frac{1}{\Gamma(s)}=e^{(\gamma-2 \pi i k) s} \cdot s \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-\frac{s}{n}}, \quad \forall s \in \mathbb{C} .
\end{aligned}
$$

Putting $S=\frac{1}{2}$, (infect, real not integer) we have $k=0$.

