MATH4050 Real Analysis Assignment 8

There are 6 questions in this assignment. The page number and question number for each question correspond to that in Royden's Real Analysis, 3rd or 4th edition.

- Shus, wlg. for E IR & nd fulx), fro 1. (3rd: P.89, Q9; 4th: P.84, Q22) Let $\{f_n\}$ be a sequence of nonnegative measurable functions on $(-\infty, +\infty)$ such that $f_n \to f$ a.e., **K** 4.e and suppose $\int f_n \to \int f < \infty$. Show that for each measurable set E we have $\int_E f_n \to \int_E f$. Apply the Genwilized 2. (3rd: P.93, Q10) Cebesgie Th. $|f_n-f| \leq |f_n| + |f| = f_n + f$ a. Show that if f is integrable over E, then so is |f| and 1+1

 $\left| \int_{\Sigma} f \right| \leq \int_{\Sigma} |f|.$

Does the integrability of |f| imply that of f? (no w f is not nece mensurally

- b. The improper Riemann integral of a function may exist without the function being integrable (in the sense of Lebesgue), e.g., if $f(x) = \frac{\sin x}{x}$ on $[0, \infty]$. If f is integrable, show that the improper
- Riemann integral is equal to the Lebesgue integral when the former exists. $\neg CON \cdot f_n(\neg)$ (3rd: P.93, Q11) If φ is a simple function, we have two definitions for $\int \varphi$, that on page 77 and that on page 90 (3rd. 3. (3rd: P.93, Q11) ed.). Show that they are the same. (Note: one definition is the one defining at the first stage, the another one is defined by general Lebesgue integral) Easyfrom Def. 4. (3rd: P.93, Q12; 4th: P.89, Q30) Let g be an integrable function on a set E and suppose that $\{f_n\}$ is a sequence of measurable functions such that $|f_n(x)| \leq g(x)$ a.e. on *E*. Show that All are seen integrable d Apply Fatou's $\int_E \liminf f_n \leq \liminf \int_E f_n \leq \limsup \int_E f_n \leq \int_E \limsup f_n$. So find - valued a.e.
 - Then, look at 05 g = fn 5. (3rd: P.93, Q13) Let h be an integrable function and $\{f_n\}$ a sequence of measurable functions with $f_n \ge -h$ and $\lim f_n = f$. Show that $\int f_n$ and $\int f$ has a meaning and $\int f \leq \liminf \int f_n$. futh well-defined

· hale R a.e. a. Show that under the hypotheses of Theorem 17 (3rd. ed.) (i.e. g_n , g are integrable such that $g_n \to g$ pointwisely a.e., f_n are measurable, $|f_n| \leq g_n, f_n \to f$ pointwisely a.e. and

that $g_n \to g$ pointwisely a.e., f_n are measurable, $|f_n| \leq g_n$, $f_n \to f$ pointwisely a.e. and $f = \lim_{n \to \infty} \int g_n$) we have $\int |f_n - f| \to 0$. $f = \int f_n - f| \to 0$ if and only if $\int |f_n| \to \int |f|$. f = g(f). f

of
$$\psi_{n} = n\chi_{An} + \sum_{k=1}^{n-2^{n}} u\chi_{Bn,k}$$
 f f
(so $0 \leq j - (p_{n} \leq j \leq apph)_{j}$
Lebesgane Conv. Th) . Ilfor-fill < E.
where $A_{n} = \{x \in [-n, n] : -j(x) \geq n\}$
 $B_{n,k} := \{x \in [-n, n] : -j(x) \geq n\}$
 $B_{n,k} := \{x \in [-n, n] : -j(x) \geq n\}$
 $Writing ni canonical form (with large arough n)$
 $\varphi_{\cdot} = (q_{\cdot} := \sum_{j=1}^{n} b_{j}\chi_{B_{j}} (each B_{j} \leq [-n, n]))$
Take U_{j} (representable as a disjoint
finitly many intervels) s.t.
 $m(B_{j} = U_{j}) < \frac{\sum_{j=1}^{n} N}{(2M)}$
where $M = \sum_{j=1}^{n} |b_{j}| \cdot Then$
 $\int |\varphi_{-}\psi_{1}| \leq \sum_{j=1}^{n} \sum_{j=1}^{n} |\varphi_{-}\psi_{1}| < 2M \cdot \frac{\sum_{i=1}^{n} N}{(2M)} = \sum_{i=1}^{n} N$
 $Since each $B_{j} \leq [-n, n]$, $\exists a finitic - lemgth$
 $Miczival (a, b) \geq B_{j}$, $U_{j} : \forall_{j} = 1, 2, ..., N$.$

$$\begin{aligned} & (x_{16}) \cdot y_{16}(x_{15}) \cdot y_{16}(x_{16}) = (x_{16}) \cdot y_{16}(x_{16}) \\ & (x_{16}) \cdot y_{16}(x_{16}) = (x_{16}) \cdot y_{16}(x_{16}) \\ & (x_{16}) \cdot y_{16$$

$$\frac{\&18}{\&18} \cdot \&t + 0 \in [0,1], (tn) \subseteq [0,1] \setminus to$$

convergent to to. Suffices to show that:

$$\lim_{M \to 0} \int_{0}^{t} f(x, tn) dx = \int_{0}^{t} \lim_{M \to 0} f(x, tn) dx$$

Lett-g fine = $f(x, tn) \forall x$ given.
apply the Lobesgue Conv. Th.
Q19. Let to $\in [0,1]$. Wish to show

$$\int_{0}^{t} g(x, tn) - \int_{0}^{t} f(x, to) dx = \int_{0}^{t} \lim_{M \to -to} \frac{f(x, tn) - f(x, tn)}{tn - to} dx$$

Lett-g fine = $\int_{0}^{t} \frac{f(x, tn) - f(x, tn)}{tn - to} dx$

Apply the Mean - Value Th (e.g. 2060).
 $\frac{2f(x, tn)}{2t} = \frac{2f(x, tn)}{2t} \leq \frac{2f(x, tn)}{2t}$

Apply the Mean - Value Th (e.g. 2060).
 $\frac{f(x, tn) - f(x, tn)}{tn - to} = 2f(x, tn) \leq g(x)$ a.e.
 $\int_{0}^{t} \frac{f(x, tn) - f(x, tn)}{tn - to} = 2f(x, tn) \leq g(x)$ a.e.
So apply the Bounded Conv. Th. Jone for Coll 9.

613. The subtle part of the grachen is : $\mathfrak{MF}(\mathbb{R}) \neq f := g + h$ $g \in m_{\overline{F}}^{\dagger}(\mathbb{R})$ (so $g \in [0,\infty]$) $-\mathbf{h} \in \mathcal{A}(\mathbf{R})$ Need to justify the definition that $\int f = \int g + \int f$ 75g+5f if ul>of=g+h with gemfit(R), fed(R) Show that it cannot happen that one and only one of (g,) is finite (the other is infinite), say SSE R

R)

$$\int \overline{g} = +\infty$$
Note that $f = g + h = \overline{g} + \overline{h}$ and thus,
 g, h, \overline{h} are of finite-valued a.e and so
 $\overline{g} = g + h - \overline{h}$
and

$$ta = \int \overline{g} = \int (g+h-\overline{h}) = \int g + \int h - \int \overline{h} \quad E | R,$$

which is not possible. Therefore

$$\int f := \int g + \int h$$

is well-defined regardless

$$\int g = \int g = \int m t v \text{ or } m f \text{ in } t e.$$