
MATH4050 Real Analysis

Assignment 8

There are 6 questions in this assignment. The page number and question number for each question
correspond to that in Royden’s Real Analysis, 3rd or 4th edition.

1. (3rd: P.89, Q9; 4th: P.84, Q22)
Let {fn} be a sequence of nonnegative measurable functions on (�1,+1) such that fn ! f a.e.,

and suppose
Z

fn !
Z

f <1. Show that for each measurable set E we have
Z

E
fn !

Z

E
f .

2. (3rd: P.93, Q10)

a. Show that if f is integrable over E, then so is |f | and
����
Z

E
f

���� 
Z

E
|f |.

Does the integrability of |f | imply that of f?

b. The improper Riemann integral of a function may exist without the function being integrable (in

the sense of Lebesgue), e.g., if f(x) =
sin x

x
on [0,1]. If f is integrable, show that the improper

Riemann integral is equal to the Lebesgue integral when the former exists.

3. (3rd: P.93, Q11)
If ' is a simple function, we have two definitions for

R
', that on page 77 and that on page 90 (3rd.

ed.). Show that they are the same. (Note: one definition is the one defining at the first stage, the
another one is defined by general Lebesgue integral)

4. (3rd: P.93, Q12; 4th: P.89, Q30)
Let g be an integrable function on a set E and suppose that {fn} is a sequence of measurable
functions such that |fn(x)|  g(x) a.e. on E. Show that

Z

E
lim inf fn  lim inf

Z

E
fn  lim sup

Z

E
fn 

Z

E
lim sup fn.

5. (3rd: P.93, Q13)
Let h be an integrable function and {fn} a sequence of measurable functions with fn � �h and
lim fn = f . Show that

R
fn and

R
f has a meaning and

R
f  lim inf

R
fn.

6. (3rd: P.93, Q14; 4th: P.90, Q33 for part b.)

a. Show that under the hypotheses of Theorem 17 (3rd. ed.) (i.e. gn, g are integrable such
that gn ! g pointwisely a.e., fn are measurable, |fn|  gn, fn ! f pointwisely a.e. andZ

g = lim
Z

gn) we have
Z

|fn � f |! 0.

b. Let {fn} be a sequence of integrable functions such that fn ! f a.e. with f integrable. ThenZ
|fn � f |! 0 if and only if

Z
|fn|!

Z
|f |.
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