Hw 4 - 2023 (Ans all quistions)
1. Show the following "quasi-regularity"
[woperlive for order-measure
$$m^*$$
: Let
 $m^*(A) \leq +\infty$. Then
(i) $m^*(A) = rinf\{m(G): open G \geq A\}$
(ii) $= a G_{\sigma} - set H = = \bigcap G_n \supseteq A s.t. m(H) = m^*(A)$
(where each G_n is open).

.

.

2. Let
$$\{E_{n}: n \in N\}$$
 be a sequence of measurable sets
and let $E = \lim \inf E_{n} (:= \bigcup_{n=1}^{\infty} \bigcap_{k \ge n} E_{n} = \bigcup_{n=1}^{\infty} T_{n}$
where $T_{n}:= \bigcap_{k \ge n} E_{k} \not\in M$. Show that
 $m(E) \le \liminf_{n \ge n} m(E_{n})$
 $Via the Sollowing consideration$
 $m(E) = \lim_{n \ge n} m(T_{n}) = \liminf_{n \ge n} m(T_{n}) \le \liminf_{n \ge n} m(E_{n})$.

3. Let
$$I:=[a,b]$$
 be a nonempty finite length
interval. Show that it intersects its
"Shifted interval" $3+I$ and $that$
 $I\cup(3+I)$ is an interval with length \leq
 $(I+\delta)\cdot l(I)$ provided that $|3| \leq \delta \cdot l(I)$
and $\delta \in (0,1)$.

$$\begin{aligned} & \text{Indeed}, \text{for } \textcircled{O}, \text{tak } c \ \text{CoIC} \left\{ \text{In}: \text{new} \right\} \\ & \text{of } E \text{ s.t.} \\ & m\left(\bigcup_{n=1}^{\infty} \prod_{n=1}^{\infty} \right) \geqslant m\left(E \right) > \alpha : \bigcap_{n=1}^{\infty} \left(\text{In} \right) \\ & \underset{n=1}{\overset{n=1}{\underset{n=1}{\overset{n=1}{\underset{n=1}{\overset{n=1}{\atop{n=1}}}}} \\ & = m\left(\text{EnIn} \right) \text{ and hence} \\ & \text{if } \text{least one tw/m} \quad m\left(\text{EnIn} \right) > \alpha : \left(\text{In} \right) \\ & \text{for some } n \in \mathcal{M}. \\ & \text{To show } \textcircled{O}, \text{ suppose observative that } \exists \text{scLHS} \\ & \left(131 < \frac{\mathcal{L}(\text{In})}{2} \right) \text{ s.t. } \exists \notin \text{RHS} : \\ & \exists + \left(\text{EnIn} \right) \text{ diagnist from } \left(\text{EnIn} \right) \int_{\mathcal{I}}^{\mathcal{S}=\mathcal{K}} \\ & \text{and } \text{if } \text{follows from } \bigotimes \left(\text{applied to In } \text{for } 1 \right) \\ & \text{and } \left(\underbrace{3} + \left(\text{EnIn} \right) \cup_{o} \left(\text{EnIn} \right) \right) \subseteq \underbrace{3} + I_{a} \right) \cup \left(\text{In} \right) \\ & \text{of } \text{men} < \frac{3}{2} : l(\text{In}) \end{aligned}$$

$$\begin{aligned} & \text{Mult} \\ & 2 \cdot \mathbf{m} (\text{EnJ}_{\alpha}) = \mathbf{m} \left(3 + (\text{EnJ}_{\alpha}) \right) + \mathbf{m} \left(\text{EnJ}_{\alpha} \right) < \frac{3}{2} \mathcal{L}(\mathcal{I}_{\alpha}) \\ & \mathcal{V} \\ & \mathcal{V} \\ & 2 \cdot \left(\alpha \cdot \mathcal{L}(\mathcal{I}_{\alpha}) \right) , \quad |\text{eading to } 2\alpha < \frac{3}{2} , \text{cmbradicting} \\ & \alpha \in (\frac{3}{4}, p) \end{aligned} \end{aligned}$$

Note. The result in Q4 is Known as The Steinhaus Theorem. Another proof is given below.

5. Let
$$0 \le m(E)$$
 (we.g. E is bounded).
By the inner and onter regularity applied to
small mough E70, \exists open G and
closed (so compart by the Heine-Borel 74) K
with $K \le E \le G$ such that $2m(K) > m(G)$.
Then, the standard compartness implies $\exists \delta > 0$
s.t. $K + V_{\delta}(0) \le G$. It remains to show
(*) $V_{\delta}(0) \le K - K (\le E - E)$.
If not, $\exists 3 \in LHS$ but $3 \notin RHS$ then
 $3 + K$ and K are disjoint (subsets of G an
 $\delta + K \le V_{\delta}(0) + K \le G$)

$$m((3+K)\cup_{o}K) \leq m(G)$$

 \parallel
 $2m(K)$,
contradicting our thore of K , G.

7. Let
$$K \subseteq G \subseteq [R$$
 with compact K and open
 G . Then \exists open set containing $O(4m give)$ such that
 $K+V \subseteq G$.
Hith. $\forall K \in [K, \exists \delta_{K} > 0 \ s.t. K+ \bigvee_{2\delta_{K}}(0) \subseteq G$. By $\&b$
 $\exists \kappa_{1,K_{k_{1}},\cdots,\kappa_{n} \in K} \ s.t. K \subseteq \bigcup_{i=1}^{m} (\kappa_{i}+\bigvee_{\delta_{K_{i}}}(0))$.
Let $\delta = \min\{\delta_{K_{1}}, \delta_{K_{2}}, \cdots, \delta_{K_{n}}\}$. Then $[K+\bigvee_{\delta}(0) \subseteq G$.
 $\delta^{*}(2nd) \operatorname{prog} d \operatorname{Steinhaus} Th, cf \& 5)$. Given $O(m(E), ne)$
 $\Im sume Wilg (nhy?) that E is bounded. You can(?)
use the outer 4 inner regularity with suitally small
 $\varepsilon > 0$ to find closed K and $Open G$ such that
 $K \subseteq E \subseteq G$ with $2 \cdot m(K) > m(G)$. By $\&b, 7$,
 K is compart and $[K+V \subseteq G$ for some open
set containing O . Show that $V \subseteq K-K (\subseteq E-E)$,
showing Steinhaus Th.
 $|thitf: Let v \in V$. Should $v + K$ be disjoint from K .
 $one would$
 $2m(K) = m(v+K) + m(K) = m((v+K) \cup_{\delta} K) \leq m(G)$,
 $\operatorname{contradicting out choice} G K, G. Therefore (v+K)nK$
 $b non-wyhly so \exists \kappa_{i}\kappa_{i} \in K$ such that $v+\kappa_{i} \leq k_{i}$; hence
 $v \in K-K$.$