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Orientation of regular surfaces

Definition

Let M be a regular surface in R3. M is said to be orientable if
there is a unit vector field N on M such that N is smooth; N has
unit length; N is orthogonal to Tp(M) at all point. If such N
exists, then it is called an orientation of M.
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Basic facts

If N is an orientation, then −N is also an orientation. There
are exactly two orientations on an orientable surface.

N is smooth means that if N = (N1,N2,N3) then each Ni is a
smooth function.

N is continuous and satisfies (ii), (iii) above that N is smooth.

The shape operator and the second fundamental form
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An instrinsic definition

We have the following intrinsic characterization of orientable
surface.

Proposition

M is orientable if and only if there exist coordinate charts covering
M so that the change of coordinate matrices have positive
determinant.
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Proof

Proof: (Sketch) If M is orientable and N is an orientation. Let
(Xα,Uα) be coordinate charts covering M. If the coordinates of
Uα are denoted by (u, v), then we may choose (u, v) so that

N =
(Xα)u × (Xα)v
|(Xα)u × (Xα)v |

. ( Why?)

Then these are the coordinate charts we want.
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Proof, cont.

Conversely, if (Xα,Uα) be coordinate charts covering M so that
the change of coordinate matrices have positive determinant.
Define N as above, then this gives an orientation of M. (Why?)

The shape operator and the second fundamental form
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The shape operator

Let M be a regular surface in R3. Suppose M is orientable with
orientaion N. That is:

N is smooth;

N has unit length;

N is orthogonal to Tp(M) at all point.

Definition

The shape operator Sp with respect to N at p is the operator
defined as follows: Let v ∈ Tp(M) and let α(t), −ε < 0 < ε be a
smooth curve on M with α(0) = p, α′(0) = v. Then Sp(v) is
defined as

Sp(v) = − d

dt
(N(α(t)))

∣∣
t=0

.
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Remarks

Notice that there is a negative sign on the RHS in the above.

Sp is also called the Weingarten map of M at p.

If N is a unit normal vector field, then N1 := −N is also a
unit normal vector field. The shape operator with respect to
N1 is the negative of the shape operator with respect to N.

The shape operator and the second fundamental form
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Basic facts

Proposition

With the above notation, the following are true:

(i) Sp is well-defined.

(ii) Sp is a linear map from Tp(M) to Tp(M).

(iii) Sp is self-adjoint with respect to the first fundamental form.

(vi) S is smooth.

The shape operator and the second fundamental form
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Sp is well-defined

Proof: (Sketch) Let X(u, v) be a local parametrization so that
X(u0, v0) = p. Then N = N(u, v).
Let α(t) = X(u(t), v(t)) so that (u(0), v(0)) = (u0, v0). Then

dN(α(t))

dt
= Nuu′ + Nvv ′.

Let v = aXu + bXv . Now v = α′(0) = Xuu′ + Xvv ′, so
u′ = a, v ′ = b at p. Hence

dN(α(t))

dt
= aNu + bNv .

So Sp is well-defined.

The shape operator and the second fundamental form
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Sp is a linear map from Tp(M) to Tp(M)

Note that Nu,Nv are in Tp(M) (Why?). So
Sp : Tp(M)→ Tp(M). It is also linear. (Why?)

The shape operator and the second fundamental form
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Sp is self-adjoint

To prove Sp is self adjoint. Let v,w ∈ Tp(M). Let
v = aXu + bXv , w = cXu + dXv . Then

−〈Sp(v),w〉 =〈aNu + bNv , cXu + dXv 〉
=ac〈Nu,Xu〉+ bd〈Nv ,Xv + ad〈Nu,Xv 〉+ bc〈Nv ,Xu〉

−〈Sp(v),w〉 = ac〈Nu,Xu〉+bd〈Nv ,Xv +cb〈Nu,Xv 〉+ da〈Nv ,Xu〉

So they are equal. (Why?)
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Examples of Sp

Let M = {ax + by + cz + d = 0}. Then we can choose

N = (a,b,c)√
a2+b2+c2

. So Sp(v) = 0. Let M = S2 = {x2 + y2 + z2 = 1}.
N = (x , y , z). Suppose α(t) = (x(t), y(t), z(t)) is a curve on M
with α′(0) = v. Then v = (x ′(0), y ′(0), z ′(0). So
Sp(v) = − d

dt N(x(t), y(t), z(t))|t=0 = −v. And Sp = −Id.
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More examples

Let M = {x2 + y2 = 1} the circular cylinder. Parametrize M
by X(u, v) = (cos u, sin u, v). Then
Xu = (− sin u, cos u, 0),Xv = (0, 0, 1). We can take
N = (cos u, sin u, 0). Then
Sp(Xu) = −Nu = −(− sin u, cos u, 0) = −Xu. Sp(Xv ) = 0.

Let M be the hyperboloid M = {z = y2 − x2}. We can
parametrize it by X(u, v) = (u, v , v2 − u2). Then
Xu = (1, 0,−2u),Xv = (0, 1, 2v) and
N = 1

(u2+v2+ 1
4
)
1
2

(u,−v , 12). At p = (0, 0, 0) = X(0, 0), and if

X(u(t), v(t)) is a curve through p, then dN
dt = (2u′, 2v ′, 0).

So Sp(Xu) = −(2, 0, 0),Sp(Xv ) = (0, 2, 0).

The shape operator and the second fundamental form


	Orientation
	Facts
	Orientation is intrinsic

	Shape operator
	Facts
	Shape operator as a linear map


