
Variation of arc length
Calculus of variation

Vector fields along α

We want to discuss variational properties of geodesics. First we
want to find a way to construct variations of a curve. The
direction of a variation is given by a vector field along the curve.
Let α(t) be a regular curve on a regular surface M. A vector field

w along α is a vector field w(t) such that:
w(t) is smooth in t. w(t) is a vector on the tangent space of M at
α(t): w(t) ∈ Tα(t)(M).
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Construction of a variation of α adapted to a given vector
field w along α

Consider a variation α(s, t) with |s| < δ, t ∈ [a, b] such that Let
α(t), t ∈ [a, b] be a regular curve on M. A variation of α with end
points fixed is a map

α : (−δ, δ)× [a, b] → M

such that: α(0, t) = α(t), the original curve.
α(s, a) = α(a), α(s, b) = α(b), i.e. end points fixed.
∂α
∂s |s=0 is called the variational vector field. Given a vector field w
along α so that w(a) = 0,w(b) = 0, want to find a variation
α(s, t) so that ∂α

∂s |s=0 = w.
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Construction, cont.

We only consider the case X(u1, u2) is a local parametrization and
α(t) = X(u1(t), u2(t)), t ∈ [a, b].

Let w(t) is a vector field along α. Then
w(t) =

∑2
i=1 a

i (t)Xi (u
1(t), u2(t)).

Let α(s, t) = X(u1(t) + sa1(t), u2(t) + sa2(t)).

Then ∂s
∂sα(s, t)|s=0 =

∑2
i=1 a

i (t)Xi (u
1(t), u2(t)) = w(t).



Variation of arc length
Calculus of variation

First variation of arc length

Let M be a regular surface. Let α : [a, b] → M be a regular curve.
Then length functional is defined as

ℓ(α) =

∫ b

a
|α̇|dt.

We want to compute the variation of ℓ around α. Consider a
variation α(s, t) with |s| < δ, t ∈ [a, b] such that

α(0, t) = α(t), the original curve.

α(s, a) = α(a), α(s, b) = α(b), i.e. end points fixed.

Let ℓ(s) = ℓ(αs) =
∫ b
a |α̇s(t)|dt =

∫ b
a | ∂∂tα(s, t)|. Here

αs(t) = α(s, t)

Want to compute d
ds ℓ(s)|s=0.
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First variation of arc length, cont.

d

ds
ℓ(s)|s=0 =

d

ds

∫ b

a
⟨∂α
∂t

,
∂α

∂t
⟩
1
2 dt

=

∫ b

a
⟨∂α
∂t

,
∂α

∂t
⟩−

1
2 ⟨ ∂

2α

∂s∂t
,
∂α

∂t
⟩dt

=

∫ b

a
⟨∂α
∂t

,
∂α

∂t
⟩−

1
2 ⟨ ∂
∂t

(
∂α

∂s

)
,
∂α

∂t
⟩dt

At s = 0,
∂α
∂t = α′(t), here α(t) = α(0, t) is the original curve.
∂
∂t

(
∂α
∂s

)
= w′(t), where w = ∂α

∂s |s=0.
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First variation of arc length, cont.

d

ds
ℓ(s)|s=0 =

∫ b

a
⟨w′, |α′|−1 dα

dt
⟩dt

=−
∫ b

a
⟨w,

d

dt

(
|α′|−1 dα

dt

)
⟩dt

because w(a) = 0,w(b) = 0.
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First variation of arc length, cont.

Proposition

Let α be a regular curve in M. Then α is a critical point of the
length functional if and only if(

d

dt

(
|α′|−1 dα

dt

))T

= 0.

α is a geodesic if and only if it is a critical point of the length
functional and is parametrized proportional to arc length.

Proof: (Sketch) Since any vector field along α which vanishes at
the end points is realized by a variation of α with end points fixed,
we conclude that (

d

dt

(
|α′|−1 dα

dt

))T

= 0.
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If |α′|=constant, then we have (α′′)T = 0. So it is a geodesic.
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Another definition of geodesic

Recall that a geodesic is a regular curve so that (i) it is a critical
point of the length functional; and (ii) it is parametrized
proportional to arc length.
In case α only satisfies (i), we then have

(α′′)T = −
(
|α′| d

dt
|α′|−1

)
α′.

A regular curve α is said to be a pre-geodesic if (α′′)T is
proportional to its tangent vector α′. That is:

(α′′)T = λα′

for some smooth function λ(t).
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Equation for pre-geodesic in local coordinates

Suppose in local coordinates, α(t) = X(u1(t), u2(t)). Then

(α′′)T = (ük + Γkij u̇
i u̇j)Xk , α′ = u̇kXk .

Hence the pre-geodesic equation is of the form:

ük + Γkij u̇
i u̇j = λu̇k

for k = 1, 2.



Variation of arc length
Calculus of variation

Basic facts on calculus of variation

Consider the so-called action:

S =

∫ b

a
L(t, ϕ, ϕ̇)dt

Here ϕ = (ϕ1, . . . , ϕm) is a vector valued function of t, ϕ̇ = d
dtϕ.

Substitute ϕ for u, ϕ̇ for z ,
L = L(t; u1, . . . , um; z1, . . . , zm) is called Lagrangian. We always
assume that L is smooth in t, u, z in the domain under
consideration.

L(t, ϕ, ϕ̇) = L(t;ϕ1, . . . , ϕm; ϕ̇1, · · · , ϕ̇m).
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Example

Consider m particles in three space with coordinates (x j , y j , z j)
with mass mj . Consider

L =
1

2

∑
j

mj

[
(ẋ j)2 + (ẏ j)2 + (ż j)2

]
− V (t, x , y , z)

where V is the potential energy. Here ϕk are those x j , y j , z j ; ϕ̇k

are those ẋ j , etc. They are functions of t along the trajectory of
the particles.
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Variation

Instead of writing ∂
∂ui

L, we write

∂

∂ϕi
L

etc. Let us take a variation of the action. Namely, let
η(t) = (η1(t), . . . , ηm(t)) is a smooth (vector valued) function so
that η = 0 near a, b. Let

S(ϵ) =

∫ b

a
L(t, ϕ+ ϵη,

˙︷ ︸︸ ︷
(ϕ+ ϵη))dt
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Euler-Lagrangian equations

Suppose L(t, ϕ+ ϵη,
˙︷ ︸︸ ︷

(ϕ+ ϵη)) is smooth for ϵ is small. Then

d

dϵ
S(ϵ)|ϵ=0 =

∫ b

a

∑
k

ηk
∂L
∂ϕk

+
∑
k,µ

η̇k
∂L
∂ϕ̇k

 dt

=

∫ b

a

(∑
k

ηk
(

∂L
∂ϕk

− d

dt

(
∂L
∂ϕ̇k

)))
dx .

Let

Ek =:
∂L
∂ϕk

− d

dt

(
∂L
∂ϕ̇k

)
for k = 1, . . . ,m. These are called Euler-Lagrange expression
(E.-L. expression).
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Remark

As far as S ′(0) is concerned, instead of consider ϕ(t) + ϵη(t), it is
equivalent to consider smooth variation ϕ(s, t), |s| < δ, satisfying
the following

ϕ(0, t) = ϕ(t), the original function;

ϕ(s, a) = ϕ(a), ϕ(s, b) = ϕ(b) for all s; i.e., the values are
fixed at end points.

Then ϕ(s, t) = ϕ(t) + sη(t) + O(s2) with η(a) = η(b) = 0,
where η(t) = ∂

∂sϕ(s, t)|s=0.
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Euler-Lagrangian equations, continued

Lemma

Let f = (f1, . . . , fm) be a vector valued continuous functions on
[a, b] such that ∫ b

a

∑
k

fkηkdt = 0

for any smooth functions ηk with compact supports in (a, b), i.e.
ηk = 0 near a, b. Then fk = 0 for all k .
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Euler-Lagrangian equations, continued

ϕ is said to be an extremal of the action S mentioned above, if for
any variation as above, we have S ′(0) = 0.

Theorem

A C 2 function ϕ = (ϕ1, . . . , ϕm) is an extremal of S if and only if
it satisfies the E-L equations for L above: Ek = 0, i.e.

∂L
∂ϕk

− d

dt

(
∂L
∂ϕ̇k

)
= 0

for k = 1, . . . ,m.
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Example

Example: As before, consider m particles in three space with
coordinates (x j , y j , z j) with mass mj . Let

L =
1

2

∑
j

mj

[
(ẋ j)2 + (ẏ j)2 + (ż j)2

]
− V (t, x , y , z)

where V is the potential energy. Here ϕk are those x j , y j , z j which
depend only on t. ϕ̇k are those ẋ j , etc.
E.-L. expressions are given by

E1j = −∂V

∂x j
−mj

d2x j

dt2
;E2j = −∂V

∂y j
−mj

d2y j

dt2
;E3j = −∂V

∂z j
−mj

d2z j

dt2
.
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Application to geodesic: energy of a curve

Let M be a regular surface and α be a smooth curve defined on
[a, b]. Then energy of α is defined to by

E (α) =
1

2

∫ b

a
⟨α′, α′⟩dt. (1)

⟨α′, α′⟩ is called the energy density.
Remark: With the above notation, (ℓ(α))2 ≤ (b − a)E (α), and
equality holds if and only if α is parametrized proportional to arc
length.
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Application to geodesic: energy of a curve, cont.

Theorem

Suppose α is a regular curve defined on [a, b]. α is an extremal of
E if and only if α is a geodesic.

Proof: Let α(s, t) be a variation of α with end points fixed. Let
E (s) be the energy of αs(t) = α(s, t). Then at s = 0

E ′(s) =

∫ b

a
⟨ ∂

2α

∂s∂t
,
∂α

∂t
⟩ = −

∫ b

a
⟨w, α′′⟩dt

where w = ∂α
∂s |s=0. Hence α is an extremal if and only if

(α′′)T = 0. That is, a geodesic.
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E-L equations are equivalent to geodesic equations

To find the E-L equations for the energy functional in local
parametrization: X(u1, u2) with first fundamental form gij . Then
Lagrangian of the energy functional is:

L =
1

2
gij u̇i u̇j .

Then (denote ∂f
∂uk

by f,k etc):
∂

∂uk
L = 1

2gij ,k u̇
i u̇j

∂

∂u̇k
L = gik u̇i

d
dt

(
∂

∂u̇k
L
)
= gik üi + gik,l u̇l u̇i

Hence E-L equations are:

1

2
gij ,k u̇i u̇j −

(
gik üi + gik,l u̇l u̇i

)
= 0.

for k = 1, 2.
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E-L equations are equivalent to geodesic equations, cont.

gik üi + gpk,qu̇qu̇p −
1

2
gpq,k u̇pu̇q = 0.

Hence

üi +
1

2
g ik
(
2gpk,qu̇qu̇p − gpq,k u̇pu̇q

)
= 0.

Or

üi +
1

2
g ik
(
gpk,qu̇qu̇p + gqk,pu̇pu̇q − gpq,k u̇pu̇q

)
= 0.

Finally, we have
üi + Γipqu̇

pu̇q = 0.
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Example

Consider the surface of revolution u1 ↔ u, u2 ↔ v :

X(u, v) = (f (v) cos u, f (v) sin u, g(v))

f > 0. We want to find the equations of geodesics.
Method 1: g11 = f 2, g12 = 0, g22 = (f ′)2 + (g ′)2. The Christoffel
symbols are given by

Γ111 = 0, Γ211 = − ff ′

(f ′)2 + (g ′)2
, Γ112 =

ff ′

f 2
;

Γ212 = 0, Γ122 = 0, Γ222 =
f ′f ′′ + g ′g ′′

(f ′)2 + (g ′)2
.

Hence geodesic equations are

ü +
2ff ′

f 2
u̇v̇ = 0
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and

v̈ − ff ′

(f ′)2 + (g ′)2
u̇2 +

f ′f ′′ + g ′g ′′

(f ′)2 + (g ′)2
v̇2 = 0.
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Example, cont.

Method 2: On the other hand, the 1
2 of the energy density of a

curve is given by

L =
1

2
(f 2(u̇)2 + ((f ′)2 + ((g ′)2)(v̇)2).

Then
∂

∂u
L = 0,

∂

∂v
L = ff ′u̇2 + (f ′f ′′ + g ′g ′′)v̇2;

∂

∂u̇
L = f 2u̇,

∂

∂v̇
L = ((f ′)2 + ((g ′)2)v̇ .

The E-L equations are:

d

dt
(f 2u̇) = 0,

and

ff ′u̇2 + (f ′f ′′ + g ′g ′′)v̇2 − d

dt

(
((f ′)2 + ((g ′)2)v̇

)
= 0
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d

dt
(f 2u̇) = 0,

and

ff ′u̇2 + (f ′f ′′ + g ′g ′′)v̇2 − d

dt

(
((f ′)2 + ((g ′)2)v̇

)
= 0

Compare with previous computations:

ü +
2ff ′

f 2
u̇v̇ = 0

and

v̈ − ff ′

(f ′)2 + (g ′)2
u̇2 +

f ′f ′′ + g ′g ′′

(f ′)2 + (g ′)2
v̇2 = 0.
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Example

We may also use the energy functional to compute Γkij . Consider
the polar coordinates of the plane X(r , θ) = (r cos θ, r sin θ, 0). Let
r ↔ u1, θ ↔ u2. Then g11 = 1, g12 = 0, g22 = r2. Then 1

2 of the
energy density is given by

L =
1

2
((ṙ)2 + r2(θ̇)2).

Then
∂

∂r
L = r(θ̇)2,

∂

∂ ṙ
L = ṙ ;

∂

∂θ
L = 0,

∂

∂θ̇
L = r2θ̇.

So E-L equations are {
r(θ̇)2 − d

dt ṙ = 0

− d
dt

(
r2θ̇
)
= 0.
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{
r̈ − r(θ̇)2 = 0

θ̈ + 2
r ṙ θ̇ = 0.

These are geodesic equations. Hence one can obtain Γkij by
comparing with the geodesic equations.
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