Variation of arc length

Vector fields along «

We want to discuss variational properties of geodesics. First we
want to find a way to construct variations of a curve. The
direction of a variation is given by a vector field along the curve.
Let «(t) be a regular curve on a regular surface M. A vector field

w along « is a vector field w(t) such that:
w(t) is smooth in t. w(t) is a vector on the tangent space of M at
a(t): w(t) € Tye)(M).



Variation of arc length

Construction of a variation of o adapted to a given vector
field w along «

Consider a variation a(s, t) with |s| < §, t € [a, b] such that Let
a(t), t € [a, b] be a regular curve on M. A variation of o with end
points fixed is a map

a:(—4,0) x [a,b] > M

such that: «(0, t) = «a(t), the original curve.

a(s,a) = a(a),as, b) = a(b), i.e. end points fixed.

%‘:]520 is called the variational vector field. Given a vector field w
along « so that w(a) = 0,w(b) = 0, want to find a variation

a(s, t) so that g—(j|5:0 =w.



Variation of arc length

Construction, cont.

We only consider the case X(u!, u?) is a local parametrization and
a(t) = X(u'(t), u?(t)), t € [a, b].
o Let w(t) is a vector field anng a. Then
w(t) = 327 &' (6)Xi(u' (1), (1)),
o Let a(s, t) = X(ul(t) + sal(t), u?(t) + sa’(t)).
@ Then %a(s, t)s=0 = S &' (£)X;(ul(¢), u?(t)) = w(t).



Variation of arc length

First variation of arc length

Let M be a regular surface. Let « : [a, b] = M be a regular curve.
Then length functional is defined as

b
:/ || dt.
Ja

We want to compute the variation of ¢ around «. Consider a
variation a(s, t) with |s| < ¢, t € [a, b] such that
e «(0,t) = a(t), the original curve.
e a(s,a) = a(a),a(s, b) = a(b), i.e. end points fixed.
o Let /(s) = l(as) f |aes(t)|dt = f | 2a(s, t)]. Here
as(t) = a(s, t)
e Want to compute 2((s)|s—o.



Variation of arc length

First variation of arc length, cont.
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o 5 = d/(t), here a(t) = a(0, t) is the original curve.
0

- (92) = w/(t), where w = %Cs“|5:0.



Variation of arc length

First variation of arc length, cont.
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because w(a) = 0,w(b) = 0.



Variation of arc length

First variation of arc length, cont.

Let o be a regular curve in M. Then « is a critical point of the
length functional if and only if

d ( ,_1da\\"
(G (%)) =e

« is a geodesic if and only if it is a critical point of the length
functional and is parametrized proportional to arc length.

Proof: (Sketch) Since any vector field along a which vanishes at
the end points is realized by a variation of « with end points fixed,

we conclude that
d [, ,_ida\\"
— — =0.
(dt <|O‘| dt>>



Variation of arc length

If |o/|=constant, then we have (o) = 0. So it is a geodesic.



Variation of arc length

Another definition of geodesic

Recall that a geodesic is a regular curve so that (i) it is a critical
point of the length functional; and (ii) it is parametrized
proportional to arc length.

In case « only satisfies (i), we then have

d
(o//)T — _ <‘O/|dt’a/|l> o

A regular curve « is said to be a pre-geodesic if (o/)7 is
proportional to its tangent vector /. That is:

(O//)T _ )\O/

for some smooth function A(t).



Variation of arc length

Equation for pre-geodesic in local coordinates

Suppose in local coordinates, a(t) = X(u'(t), u?(t)). Then
(@) = (uk + Thuiu) Xy, o = ukXy.
Hence the pre-geodesic equation is of the form:
ok + TG — Ak

for k =1,2.



Calculus of variation

Basic facts on calculus of variation

Consider the so-called action:
b .
s= [ cle.o.)de
a

Here ¢ = (¢, ...,¢™) is a vector valued function of t, ¢ = 4.

Substitute ¢ for u, ¢ for z,

L=L(t;ut,...,u™ 2z ..., z™) is called Lagrangian. We always
assume that £ is smooth in t, u, z in the domain under
consideration.

‘c(tv d)a ¢) = ‘C(t; ¢17 e ¢m; ¢.1a o ,qb'm)‘



Calculus of variation

Example

Consider m particles in three space with coordinates (x/, y/, 2/)
with mass m;. Consider

1 j . Y
L=3 > om () + (#)? + (¢)°] - V(t.x,y,2)
J
where V is the potential energy. Here ¢¥ are those x/, y/, z/; ¢k

are those %/, etc. They are functions of t along the trajectory of
the particles.



Calculus of variation

Variation

Instead of writing 8‘3,& we write
0
L
¢’

etc. Let us take a variation of the action. Namely, let
n(t) = (n*(t),...,n™(t)) is a smooth (vector valued) function so
that n = 0 near a, b. Let

. .
S(e):/ L(t, ¢+ en, (¢ + en))dt



Calculus of variation

Euler-Lagrangian equations

—_—~
Suppose L(t, ¢ + en, (¢ + en)) is smooth for € is small. Then
d K O -k
E €)|e=0 = / (Z ad)k + Z 8¢’<)
b oL oL
_ k(2= _ 2 [ 2=
-/ (Zk:” (565 <a¢sk>>> e

g . 9L d (oL
KT 0k dt \ 9gk

for k =1,..., m. These are called Euler-Lagrange expression
(E.-L. expression).

Let



Calculus of variation

Remark

As far as §’(0) is concerned, instead of consider ¢(t) + en(t), it is
equivalent to consider smooth variation ¢(s, t), |s| < ¢, satisfying
the following

e ¢(0,t) = ¢(t), the original function;

e ¢(s,a) = ¢(a), (s, b) = ¢(b) for all s; i.e., the values are
fixed at end points.

o Then ¢(s,t) = ¢(t) + sn(t) + O(s?) with n(a) = n(b) = 0,
where n(t) = gcﬁ(s, t)|s=o0-



Calculus of variation

Euler-Lagrangian equations, continued

Let f = (fi,...,fm) be a vector valued continuous functions on

[a, b] such that
b
/ > fimdt =0
4k

for any smooth functions ny with compact supports in (a, b), i.e.
nk = 0 near a,b. Then f, =0 for all k.




Calculus of variation

Euler-Lagrangian equations, continued

¢ is said to be an extremal of the action S mentioned above, if for
any variation as above, we have 5’(0) = 0.

A C? function ¢ = (¢',...,¢™) is an extremal of S if and only if
it satisfies the E-L equations for L above: Ex =0, i.e.

oL d(9LY_
ok dt \ggk)

fork=1,..., m.

.




Calculus of variation

Example

Example: As before, consider m particles in three space with
coordinates (x/, y/, z/) with mass m;. Let

L= %ij ()2 + ()% + (Z)°] = V(t,x,y,2)
J

where V is the potential energy. Here ¢* are those x/, y/, z/ which
depend only on t. ¢k are those X/, etc.
E.-L. expressions are given by

E._ oV 'dzxj' oV .dzyj' oV .dzzj
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Y



Calculus of variation

Application to geodesic: energy of a curve

Let M be a regular surface and o be a smooth curve defined on
[a, b]. Then energy of « is defined to by

b
E(o) =, / (o, o')dt. (1)

(o/, ) is called the energy density.

Remark: With the above notation, (¢(«))? < (b — a)E(c), and
equality holds if and only if « is parametrized proportional to arc
length.



Calculus of variation

Application to geodesic: energy of a curve, cont.

Suppose « is a regular curve defined on [a, b]. « is an extremal of
E if and only if a is a geodesic.

Proof: Let a(s, t) be a variation of o with end points fixed. Let
E(s) be the energy of as(t) = a(s,t). Thenat s =0

b 02a Oa b
E(9) = [ (g o) == [ w.ae

where w = %‘j\s:g. Hence « is an extremal if and only if
(@”)T = 0. That is, a geodesic.



Calculus of variation

E-L equations are equivalent to geodesic equations

To find the E-L equations for the energy functional in local

parametrization: X(u?, u?) with first fundamental form gj;. Then
Lagrangian of the energy functional is:

1 - -
L= Eg,-ju’uf.
Then (denote F by fi etc):
8u"£ 2g,J kuud
8Uk£ gIkUI .. . .
& <$£) = giku' + gik,u'u’
Hence E-L equations are:
S8ijku'w — <gfku’ + gfk,/u’u’) =0.

for k =1,2.



Calculus of variation

E-L equations are equivalent to geodesic equations, cont.

gikU" + gpk,quiuP — Egpq’kupuq =0.

Hence 1
ul + igik (28pk,qUIUP — gpq kUPUT) = 0.

v Eglk (8pk.qUTUP + Eqk,piP U — gpq kUPLT) = 0.

Finally, we have ) '
u + r;,qu'Pu'q =0.



Calculus of variation

Example

Consider the surface of revolution u' <+ u, u? < v:
X(u,v) = (f(v)cosu, f(v)sinu,g(v))
f > 0. We want to find the equations of geodesics.

Method 1: g11 = f2, g1o = 0, g2 = (f')?> + (g’)?. The Christoffel
symbols are given by

fr' fr
1 a2 _ 1 _
=01 = _Warlz =2
f/f//+g/g//
M, =03,=0T3%=—5— 0.
12 22 22 (f/)2 + (g/)2
Hence geodesic equations are
2ff'
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and ! 1 ol ! I
ff o '+ g'g" 5,

(FR+E?" (PP’

vV —




Calculus of variation

Example, cont.

Method 2: On the other hand, the % of the energy density of a
curve is given by

£ = 5P + (7P + (PP,

Then 5 5
_ _ — ! -2 ! !l ! I
8u£ 0, 9y —L = ff'u° + (f "+ g'g )v
Q _ £2; 0 _ \2 N2y -
L=, L= (P + (8.

The E-L equations are:

- (f20) =0
and
(P 8" — O () + (8))9) = 0



Calculus of variation

—(f?0) =0

and

4 (7 + 887 — S (7 + (8))9) = 0

Compare with previous computations:

. 2ff
U+?UV:0
and !/ 1 £ ! I
ff o ' +g'g" 5

vV — us +

(FR+E?" " (PP’



Calculus of variation

Example

We may also use the energy functional to compute Ff‘ Consider
the polar coordinates of the plane X(r,6) = (rcosf, rsinf,0). Let
r<> ut,0 > u® Then g11 = 1,810 = 0,82 = r?. Then 3 of the
energy density is given by

1 .
L= (77 + POP).
Then 9 5
9,2 9
8r£ r(0)-, ar_ﬁ r;
0 0 24
%ﬁ = 0, %;C =r ‘9
So E-L equations are
r(0)? — 2r=0
—% (rzé) =0.



Calculus of variation

'_r'_—r(H'_)zzO
0+ 279 =0.

These are geodesic equations. Hence one can obtain Ff-J‘- by
comparing with the geodesic equations.
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