1/12/22	MATH 4030 Totorial	· · · · · · ·	· · · · · ·	· · · ·	· · ·	· · · · ·	· · · ·	• •
Reminders: - Assignment 6 du	e tonight 11:59pm.	· · · · · · · ·	· · · · · ·	· · · ·	· · ·	· · · · ·	· · · ·	••••
-Friend: 9 Dec 15:	e tonight 11:59pm. 30-1730 @ amesity	Gymnosiin.	· · · · · ·	· · · ·	· · ·	· · · · · ·		• •
Recall Def								0 0 0 0
· K [ab] > Misa	pieceuise regular, s	mple, closed (ever if	٤	· · ·	· · · · ·		• •
-Simple: V.E.,	$t_2 \in (a,b)$, $t_1 \neq t_2$,	$\alpha(t_1) \neq \alpha(t_1)$	5),		· · ·	· · · · · ·	· · · ·	• •
- piecewise regn regular on e	1= a(b). War: 7 a=to <t1 <.<br="">Cloh (ti, titi) 1=0</t1>	······································	=6 5.7	~ K is	cliffer	renticulale (mel	
Each $\alpha(t_i)$ is a	culled a vertex of x.		tex, w	e liene	Cun	extern	- angle	\mathfrak{A}_i
x Ri	$\theta_{i} \in (-\pi,\pi].$	· · · · · · · · ·	· · · · · ·	· · · · ·	· · ·	· · · · · ·	· · · · ·	••••
	τ.		· · · · ·		· · ·	· · · · ·		

-Mis a regular surface. A connected region RCM is regular, if Ris compact and has as boundary DR=the finite union of single, closed, piecewise regular curres which do not intersect each other.
as boundary DR= the finte union of simple, dosed pileeurise regular currer which
donot intersect each other.
Marscotin here.
R. ALANX.
R. K. X.
- a triangulation T of R & a finite family of triangles Ti s.t.
$) R = \hat{U} T_{i}$
2) if TiNT; #p, then they either here a common edge or a common vertex only.
2) if $T_i \cap T_j \neq \emptyset$, then they either here a common edge or a common vertex only #eclges $V(T) = F - E + V_1 - Euler - Poincence Chenacteristic of Z. \#ef trangles \#ertices$

Faets:) Every vegular vegion R admit: a trangulation 2) X for R depend on choice of triangulation, so X(R) is well-defined. 3) Classification of compart surfaces. MCR² compart connected surface, then H is homeonylie to a sphere u/a number of handles g (genus) attached and $\chi(M) = 2 - 2q$, q = 0, 1, 2, .lopology. 4) 78 7(Mi)=7(M2), then $M_1 \simeq M_2$. $\chi(s^2) = 2$ (\bigcirc) 60 $\chi(T) = 0$ $\mathcal{T} = -2$

Gibbal Gauss-Bo	met the - Let RCM be a regular region of an orien	lect surface, and
baneley DR, with	mut the - let RCM be a vegetar region of an orien In be the single, closed, pieceware regular cure attreach positively overted, and let $\overline{v}_{1,}, \overline{v}_{p}$ be	e the exterior
	$ds + \iint K d\sigma + \sum_{i \in I}^{p} \partial_{p} = 2\pi \chi(R).$ $R \int_{\overline{DG_{i}}} F^{2} du dv$	· ·
(When Mis a Cor We can vie	en Mar a regular region of us boundary (ie. 2M = q	b), so we get.
JJKa M	$do = 2\pi X(M).$	
		· · · · · · · · · · · · · ·

Appl : Any compact surface of everywhere positive cureture à homeomorphic to the sphere.
Pf: Since K20, 0< 15 Kdo = 207 X(M) =) X(M) >0.
S'is the only compact surface if pointer X. => X(H) = X(S ²)
$\Rightarrow M \simeq S^2$
App2: let M be conput, oriented, regular surface in R ³ not homeomorphic to S ²
Then show that K achieves both positive and negative values.
$ff:$ Since $M\neq S^2$, $\chi(M) \in O \Rightarrow JKd0 \in O$, so that means K commot be everybere pointing.
Price Mis compart, by cardier in semester, me han theit M contains of least one elliptic point po, where K(p) >0. So K count be negative everywhere either
one elliptic point po, where K(p)>0. So K count be negative everywhere either
$Pf 2: Lode of f(p) = NpN^2 \dots$

do Camo 4-6/4-7.															• •		•	•																																		
	9	Ń	Ľ	f	w	H	r	、 し	a	fp	JLo	v	t	on	,).	0	0	M		σ	U	214	to	Ja	le	(ን	Ň	pc	LC.	t	8	ų	fei	ıl	[μ		lie	ZIN	C	L	d	Ĥ	e	e	rti	ah	le			0
•	U	Ŀ	ct	آمر ا		f	ùe	ld		1.	h		2		S	N	nd	u	la	V		p	, 0/	t	2		iff	, U		M	Į T	5	U	6	ne	ovi	እ ም	ph	ú	ZIN	な	- 6	le.	, · ·	.	571	ıs	•	• •	•	•	0
	•	•					• •								•	•						•		•	•		•		•	•		•			•			•	•		•			•	•	•	•		• •			•
	•	•	•	•					•		•	•		•						•			•	•	•	•	•	•	•			• •		•	•	•			• •		•	•	•	•	•		•		· ·	•	•	•
•	•	•	•	0	•				•						0	•						•	•	•	•	•	•	•	•	•		• •		•	•	•	•	•	• •		•	•	•	•	•	•	•				•	0
	•	•	•						0															•								•							•				0	•	0				• •			
•	•	•	•	•	•		• •		•		•	•		•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•			• •	••••	•	•	•	•	•		•	•	· ·	•	•	•
	•	•	•						0		•			•	0	0				0	•	0	0	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	0	•	0	•	0	•	• •	•	•	•
•	•	•	•		•				•	•	•	•	•	•	0	0	•	•	•		•	0	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	• •		•	•	•	•	0	•	•	•	•••	•	•	•
	•			•											•								•	•	•		•		•			•		•	•	•		•	•		•		•	•		•	•		· ·			•
	•	•	•	•					0						•	•					•	•		•	•	•	•	•	•	•	•	•		•	•	•	•		•		•	•	0	•	•	•	0	•	• •		•	•
•	•	•	•		0				•	•	•	•	•	•	0	0	•	•	•	0	•	0	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•••	•	•	•
				•											•	•				•		•										•						•	•		•						0	•				•