10/11/22 MATH= 1030 Tutonial
Reminelers
-Assignment 5 due Tuesday 11:59pm (15/11)
Recall Def: d on M_1 is grien by $d(x,y) = \inf \{ l(x), s(x), s(y) = x, \alpha(y) = y \}$
- 4: M, -> M2 diffeomorphism, & is an isometry if for any pEM, the map
dep: TpM, > Typ) Mz is an isometry of inner product spaces, i.e. for any wi, uz ETpM,
$\langle w_1, w_2 \rangle_p = \langle dlep(w_1), dlep(w_2) \rangle_{le(p)}$
inverproduction inverproduct (4p)M2 TpM1.
By the polanization identity: $ v + w ^2 = \langle v + w, v + w \rangle = v ^2 + 2 \langle v, w \rangle + w ^2$
$(=) \langle V, W \rangle = \frac{1}{2} (V + W ^2 - V ^2 - W ^2),$
if lis an isometry, typeM, vetyMi, Idep(v) = 1/1.

Problem 1 clC 4-2 23. Show that a diffeomorphise : M, = Mz is an isometry iff the arclength of any parentrized
curve in M, is equal to the orclergth of the mage curve under le
Pf: (=: Suppose l'is an isometry. let x [a]b] -> M, be a paremetrized une.
$\mathcal{L}_{\alpha}^{\flat}(\Psi(\alpha)) = \int_{\alpha}^{\beta} [(\Psi \circ \alpha)'(t)] dt = \int_{\alpha}^{\beta} (\langle \Psi \circ \alpha'(t) \Psi \circ \alpha'(t) \rangle^{2} dt$
$= \int_{\alpha}^{b} (\langle x'(\epsilon), x'(\epsilon) \rangle)^{2} dt = L_{\alpha}^{b}(\alpha).$
=): Now suppose $l_{\alpha}^{b}(\alpha) = l_{\alpha}^{b}(l(\alpha))$. let $p \in M_{1}$, $V \in T_{p}M_{1}$. Suppose for contradiction
thest [dlep(v)] = [v], whore, [dlep(v)]>[v]. Take a beaune it a(0)=p
$x'(0) = V$. Then by subothness of α , there is a hold of 0 , (- ε , ε)
s.t. [dlep(x'(t))] > [x'(t)], but then theat means

· · · ·	leg leg	÷(0	x (4	در د)	، >	l_ ⁸	e e	ربو	61	t)) i	rtr	ú	li	ĩ	50	L.C.	ont	ncu	dia	to	5			· ·	•	•	· ·	•	· ·	•	• •	· · ·	•	•
Rece	UL.	Def	r '		e : < d	ph lp	(→ (µ	¢₩ ا	z	d epl	ifi vz	cow .)>	vorp Ver) (13 (13)	m =]	is 2 /2 <	≤ (< \	201 Vi	for W	rei 27	ļ, P	if	¥	pe	M	b	ω _η	, ,u	<i>ل</i> ح	¢	Fph	L.)	· · · · · · · · · · · · · · · · · · ·	•	• • • •
fo	۲ (۱	CL V	YU	her	e	ZC	no	81	M	sth	f	o	<i>.</i>	ן ח	Ŋ	Ø ⁄	N I	M		• •	•	· ·	•	••••	•	· ·	•	•	• •	•	· ·	•	•	· ·	•	•
· · · -	- -50	net	by	N ~		CN	yfon	Nei	l (E	λ	, È	l.	•	· ·	•	• •	• •	• •	• •	•	· ·	•	• •	•	· ·	•	•	• •	•	· ·	•	• •	· ·	•	•
· · ·	• •	• •	•••	•	• •	•	• •	•	• •	•	• •	• •			• •	•	•	• •	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	• •	•	• •	• •	•	•
· · · ·	· ·	· ·	• •	•	· ·	•	· ·	•	••••	•	• •	• •		•	••••	•	• •	• •	• •	•••	•	• •	•	• •	•	• •	•	•	• •	•	· ·	•	• •	· ·	•	•
· · ·	• •	· ·	•••	•	· ·	•	• •	•	• •	•	• •	• •			• •	•	• •	• •	• •	• •	•	• •	•	• •		• •	•	•	• •	•	• •	•	• •	• •		•
· · ·	· ·	· ·	• •	•	· ·	•	· ·	•	· ·	•	· ·	· ·		•	· ·	•	• •	· ·	• •	•••	•	· ·	•	· ·	•	· ·	•	•	••••	•	· ·	•	• •	· ·	•	•

Problem 2 dC 4-2218
a diffeomophism &: M, >Mz is area preserving if A(R) = A(2(R)) for any region RCM.
Prove that if It's area preserving and conformal, then I is du isometry.
Note: You many use the fact that if X(u,v) parametrizes M,
X (u,v) povenetorizes M2,
then $dl_p(X_v) = X_v$ $dl_p(X_v) = \overline{X_v}$. (4)
If Using the fact above, and by componality, we have
$\overline{E} = \langle Xu, Xu \rangle = \langle dlep(Xu), dlep(Xu) \rangle = \lambda^2 \langle Xu, Xu \rangle = \lambda^2 \overline{E}$
F=RF
$\overline{G} = \lambda^2 G_{\lambda}$
Then we have $\sqrt{EG} \cdot \overline{F}^2 = \lambda^2 \sqrt{EG} \cdot \overline{F}^2$

 $\int \sqrt{EG} - F^2 du dv = \int \sqrt{EG} - F^2 du dv = A(\ell(R)) = A(R) = \int \sqrt{EG} - F^2 du dv,$ $X'(R) \qquad \text{Charge of } X'(\ell(R)) \qquad X'(R)$ $Volvarhles \qquad 11$ $\int \lambda^2 \sqrt{EG-F^2} du du$, \Rightarrow forces $\lambda = l$, hence ℓ is on isometry. X'(P) (#): Since l'is a défennerphism, we know theat d'ep is an isomorphism of vector spaces: $\psi \circ \psi' = id_{N_2} \Rightarrow d(\psi \circ \psi')_{e(p)} = d(id_{N_2}) = id_{tep)N_2}$ dlp o(dl) (ep) Same argument for l'ole=iden, to dotain our villetse for dlp.

•	F	â	d	fu	M	N		li	ė	ei ei	r N	•	Q.	lg	ele	Y (بر	A	•	١٤	6	M	0	p	hi	CN))	đ		e	t	Ísv	~ .	2	βCe	el	'S	N	rer	es Es)e	ES	Ŀ	۲	,	5k	XIS	r ZLS∖
				١.									•	Ų										ł				· (•						•	```		• •		۱ <u>ٺ</u>						• •			• •
																													•								X,	1	ン	X	Ji Ji		•			• •			• •
									•													•	•		•		•									۱		н		5									
																																					Ľι	۲	\rightarrow	X١	(<u> </u>								
																																					· •												
0																						•			•																					• •			
																						•			•	•	•											• •					•			• •			• •
										•											•	•			•	•	•	•	•									• •					•			• •			• •
	•						•	•		•										•	•	•			•	•	•	•										• •					•			• •			• •
																						•			•	•	•		•					•				• •								• •			• •
									•													•	•		•		•										•												
0																																																	
																																																	• •
																														-													•						• •
																				•						•		•	•							•		• •							•	• •			• •
										•											•		•			•		•	•							•	•	• •					•		•	• •			• •
																										•		•	•							•		• •					•			•			• •
				•																															•			• •								• •			• •
•				•			•																											•															