27/10/22 NATH 4030 Tutonial	· · · · · · · · · · · · · · · · · · ·
Remindus:	
· Midtennis gradad,	
Avg:~58	· · · · · · · · · · · · · · · · · · ·
- Assignment 4 - due 3/11 11:59pm.	
Principal ametrices / Types of Points:	
- K(p) = det Sp = k, k, diagonalizing S	$\rho = \begin{bmatrix} k_1 & 0 \\ 0 & h_2 \end{bmatrix}$
$-H(p) = \frac{1}{2} tr Sp, = \frac{1}{2}(h_1 + k_2),$	
These eigenvalues are called principal unvotures	
e, ez. Rigenvectors are called principal directions	· · · · · · · · · · · · · · · · · · ·
Normal amentura: N-visit normal vector field of M.	$X(s), \alpha' = T, n(s) = N(s) \times T(s)$
· · · · · · · · · · · · · · · · · · ·	positively oriented {T, n, N}

Then we can u	rite 7 in the basis {n, N}
τ,	$= k_{q}n + h_{n}N$
geodesis (convotue ? nomal cuncture
kn= K<1	Va, N> = Kcoso where d is the angle between Na, N, Na
$X'(0) = \Lambda'$	then $k_n(0) = I_p(v,v)$ e.e. principal directions are an arts of
kn= Ip(v,v	$V = \langle S_{p}(v), v \rangle$
· · · · · · · · · · · · ·	= < Sp(e, cose + ezsne), e, cose + e, sind e- angle from e, to v.
all nomed anertines	= < Sp(e, cose) + Sp(ezsin e), e, cose + ezsine)
$k_1 \leq k_1 \leq k_2$.	= <kiercose +="" ercose="" ezines<="" krez="" sine,="" th=""></kiercose>
· · · · · · · · · · · · · ·	= le, cos2le + kzsm2le ~ Euler's Fonnie.

Types & Pointe: PEM
- Elliptic if Kp=det Sp>0 (principal cureatures ≠0, some sign).
e.g. points on spheres are elliptic.
· Hyperbolic if K(p) = det Sp <0 (principal ameters = 0, different sign).
- Ponedoolic if $K(p) = det Sp = 0$ but $Sp \neq 0$, (only one $p \neq k_1, k_2 = 0$),
-Plumeur if $Sp=0$ $(k_1=k_2=0)$.
· Unidothiccel if $k_1 = k_2$ (including $k_1 = k_2 = 0$).
Planan Unbilizal
11
\cdot

clo Camo 3-3 Q16 Show that a surface which is compact has an elliptic point, Pf: let Mbece comparet surface m R³ (closed, bounded). By boundedness, M = B_R(0) I can decrease R continuously until it is tangent to M of some point, say p. et t Clearly at p, $K_{\mathcal{B}}(p) = \frac{1}{|p||^2} > 0$. M MCBR, and we can show that KM > KB. So KM(p) > KB(p) = 11/12>0, So pis alternatives, $f: M \rightarrow \mathbb{R}$ by $f(p) = Npll^2$. Then since M is compact f(M) is compact out hence has a maximum po. let α be a smotheme $\alpha(0) = po$, then siee pois a maximum, we here

- $\frac{d}{dt} f(x(t)) _{t=0} = 0 \Rightarrow 0 = 2x'(0) \cdot x(0) \Rightarrow the vector is normal to Modm R3 a(0) Po Po \sum_{n=0}^{\infty} \sum$
$\frac{d^2}{dt^2} f(\kappa(t)) _{t=0} \leq 0 \Rightarrow \alpha''(0) \cdot \alpha(0) + \alpha'(0) \cdot \alpha'(0) \leq 0, \qquad \alpha'(0) \leq 0,$
Let N be the unit normal vector of M of po grien by $N = \frac{\kappa(0)}{1\kappa(0)}$, then we have
$\alpha''(0) \cdot \alpha(0) + \alpha'(0) - \alpha'(0) - \alpha''(0) \cdot N[\alpha(0)] + \alpha'(0) \cdot \alpha'(0)$
= $ \alpha(0) \langle -dN(\alpha(0)), \alpha'(0) + \alpha'(0) \cdot \alpha'(0)$
= $ \alpha(0) $ < Sp $(\alpha'(0)), \alpha'(0) > + \langle \alpha'(0), \alpha'(0) \rangle \leq 0$.
Since only condition on α was thus $\alpha(0) = \rho_0$, we can take $\alpha = \gamma_1$ where $\gamma_1(0) = 0$ and $\gamma_1'(0)$ are the principal directions (i.e. eigenvectors of S_p) for $i = 1, 2$.
Then we have <7i'(0), 7:(0) >= 1 and above mequality becomes
$k_i[\gamma_i(o)] + 1 \leq 0 \Longrightarrow k_i \leq \frac{-1}{ \gamma_i(o) } < 0$ for both $i=1,2$. Hence $k_i k_2 > 0$ and we are done.

) ()	<u>a</u>	- •	•	ŚI	No	Ŵ	1	le	ut	• •	+	kię	21 21	l L	•	24	ÌS	t	•	Ŵ	י כי בי	Ċ	OV V	np	a	S S	t	Ŵ	Ŵ	15	M	al		n	fo	i V L	25	•) 	H	E	0)	1	m m	G	23	> >	•	•		• •
P	ł	1		ليك	ip	00	ZE	2	• •	Þ	L	- (6	W	pc	eC	Ł	Ċ	X.	لذ	Ļ		H	Ę,	C) '	•	•	•	•	•	•	•	•	•	•	•		•		•			•	•	•	•	•	•	•		• •
	•		H	E	0 0	۷ : =	É	0	· ·	<u> </u> Z	l	R	1-	₹1	h	v v)	E E		0	•	, N	ع	•	k	-l	, , ,	k	2	•	ł	le	ue	2	9	p	K	it	e L	58	q	NS		መ መ		1	EL	ル	0			· ·
•	•	Ç	ہ ک ا	M	4	lic	rs		M		el	lý) pt	ic			st	۲	•	•	-	Э		Ċ	vt	J	Cı (di		tre	້	l	•	•	•	` {	ļu	U	M	M	Ĺ	• •		•	•	.ч оl	<u>.</u>	lei	gu	J	NQ NQ	· • ·
								•						•								٠			٠								٠				•				•					Γ.	N				• •	
																																																			•	• •
														•																																					• •	• •
•						•								•													•						•																		•	• •
						•			• •					•																										•				•			•					
																																																			• •	
•								•	• •				•		•	•												•											•		•										•	• •
•								•					•		•	•																				•	•		•		•											• •
•	•					•																					•						•	•								•									•	• •
•	•					•			• •					•						•														•																		
						•			• •					•																										•				•			•					
				•															•																																	
												. ,																																								

ds Como 3-2 Q1;
Show that at a hyperbolic print, the pricipal directions bisect the asymptotic
directions.
Recall: V is an asymptotic direction at $p \notin k_n = 0$
Hint: Use Euler's fonnte.
let v, be an asymptotic direction. Then by Ealer's founder: 0= k, cos2 + k, sm2 +
$=) -k_1 \cos^2 \theta = k_2 \sin^2 \theta = \frac{k_1}{162} \ge 0 \text{ since } k_1, k_2 \text{ here different signs} (hyperbolic of),$
So & hus two solutions toreton) - ky = tore (- I I)
So there exist exactly 2 asymptotic directions 4, 12. and <(1, 12) = 2 x.
and e_1, e_2 are the axes corresponding to $\theta = 0$, $\theta = \tau$, so $2e^{2\pi/3}$
we see that they bisect V, V2.