20/10/22 MATH 4030 Tutonal.
Reminclers: Assignment 3 due Friclay night 11:59pm
Belay's topic 'Isoperimetric Inequality' - not concered for final exam. Ead of chapterly do came,
Question of all curves in the plane with length l, which me bounde the largest
area?
- example of a "global" question
-Here, going to restrict or underthin to closed ennues C is closed if
$x : [a,b] \rightarrow \mathbb{R}$ with $x(a) = \alpha(b)$, $x'(a) = \alpha'(b)$
· Simple: no self - intersections, ie for all titte e (a,b), x(ti) + x(ti).
Jordan Cume The: Simple closed anus split plane into the regions.

The (Issperimetric Inequality) Let C be a single closed curve in the plane with
The (Issperimetric Inequality) : let C be a simple closed curve in the plane noth length I. let A be the area of the region bounded by C. Then
$\int_{c}^{2}-4\pi A \ge 0$
with equality if and only if Cis a circle
Lemma: let A bette area of the region hounded by a postuly oriented single closed anne $C: \alpha(t) = (x(t), y(t)), t \in [\alpha, b], then$
$A = -\int_{a}^{b} y(t) x'(t) dt = \int_{a}^{b} x(t) y'(t) dt = \frac{1}{2} \int_{a}^{b} (xy' - yx') dt.$
Pf: 1st fonda: special case of Green's Thm.
$Pf: 1^{St} \text{ founda}: \text{ special case of Gween's Thm.} \\ 2^{nd} \text{ equality: } \int_{a}^{b} xy' \text{ olt } = \int_{a}^{b} (xy)' \text{ dt } - \int_{x'y}^{b} \text{ dt } = (xy(b) - xy(b)) - \int_{a}^{b} x'y \text{ dt } = -\int_{a}^{b} x'y \text{ elt } = -\int_$

3rd fonder. average of first two. $\frac{\text{Pf of Th}}{\text{Schmidt '39}};$ $se [0, L] \\ (S) = (x(5), y(5)), S - arc-length;$ $\widehat{\alpha}(\underline{s}) = (\overline{r}(\underline{s}), \overline{y}(\underline{s}))$ $= (r(\underline{s}), ry(\underline{s}))$ []=£ S=0 A+A = A+ Tr2 x = Jry'ds - Jyr'ds

 $A + \overline{A} = \int l(xy' - \overline{y}x') ds \leq \int l(xy' - \overline{y}x') ds$ $V = (x, \overline{y}) \qquad \text{Cauchy-Schwarz mequality states} \\ w = (y', -x') \qquad |V \cdot w|^2 \leq |V|^2 |w|^2 \\ \text{with equality iff } w = \lambda v \text{ for some } \lambda \in \mathbb{R}.$ $V \cdot w = R y' - y x'$, $v \in \int [x^2 + y^2 \cdot \int (y)^2 + (x)^2 ds = \int \sqrt{x^2 + y^2} ds = lr$. $\overline{\chi^2}$ $\overline{\chi} = |\tau| = 1$ $\overline{\chi} = |\bar{\chi}| = r$ A+Â = lr. Now by Arthunetic Mean Geometric Mean mequality TAJA = TAJAr2 S 2(A+TIr2) S 2lr. equiality holds iff A=TIR. $\Rightarrow 4A\pi r^2 \leq l^2 r^2 \Rightarrow l^2 - 4\pi A \geq 0.$

Equality Case: Suppose l2-4TTA=0. => A=tr2=> L=2tr.
Equality case in C-SE => V= NW, for some NER,
$(\underline{x}, \overline{y}) = \lambda(\underline{y}, -\underline{x}), v = (\lambda w)$
$\lambda = \frac{x}{y'} = \frac{\sqrt{x}}{x} = \frac{\sqrt{x}}{\sqrt{x}} = \frac{\sqrt{x}}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{1}{x$
$\lambda = \frac{x}{y'} = \frac{1}{x'} = \frac{1}{1} \frac{1}{x'+y'} = \frac{1}{1} r, z \in x = try',$ $y = \frac{1}{x'} = \frac{1}{1} \frac{1}{x'+y'} = \frac{1}{1} \frac{1}{x'+y'}$
Then $ x(s) ^2 = x^2 + y^2 = r^2 (x')^2 + (y')^2 = r^2$ =) C is the circle, /
Steiner cl8403 goue geometrie proofs - non-rigorous b/c assumed existence of maximum.
Weierstrass e 1870-1880 gence rigorous proof using calculus of-variations
Hurritz 1902 goue a proof using Fourier analysis. A Buffon's Needle Holdern's Needle
Stervice cl8425 gome geometrie proofs - Non-rigorous b/c assumed existence of Meierstrass c 1870-1880 gence rigorous proof using calculus of variations Hurritz 1902 game a proof using Fourier analysis. A Buffon's Needle Futegral geometry based proof. Do