Basic definitions

Simple closed curves

Definition

Let o : [a, b] — M be a curve. « is said to be piecewise smooth if
there exist a = tg < t; < --- < tx = b such that

(i) « is continuous;

(i) « is regular and is smooth on each [t;, tiy1].




Basic definitions

@ « is said to be simple if a(t) # «a(t') for t #£ t'.

@ « is said to be closed if a(a) = a(b).

@ « is said to be simple closed if « is closed and is simple on
(a, b].

@ « is said to be smooth and simple closed if « is simple closed
and a(a) = «(b) and o/(b) = o/(a).

@ « is said to be a closed geodesic if « is a geodesic and is
smooth simple closed, so that a(b) = «(a) and &/(b) = &/(a).



Basic definitions

Definition

Let M be an oriented regular surface and R C M is a bounded
domain in M which is bounded by some piecewise smooth simple
closed curve oz, ...,a,. Then «; is said to be positively oriented if
the unit normaln L o is such that

(i) o/, n are positively oriented; and

(ii) n is pointing to the interior of R.




Isothermal coordinates

Facts about isothermal parametrization

Let X : U C R?> — M be an isothermal parametrization. Namely
<XIJ7 Xu> = <XVa Xv> = e2f’ <XU7 Xv> =0.

Lemma

Let a1(t) = X(51(t)) and az(t) = X(52(t)) where B;(t) are
curves in U. Then

(of, o) = e* (B8], By).-

at a point of intersection of a1, . (RHS is the standard inner
product in U C R?.)




Isothermal coordinates

. Let B = (uj, v;) for i =1,2. Then

(0, a%) =(Xuuy + Xy, (Xytip + Xy v3)

=e?(uuy + vivy) = € (B, ).



Isothermal coordinates

Facts about isothermal parametrization, cont.

Let X X
u —f v —f
e]. ‘Xu’ € u e2 ’Xv’ € v
Let 1 = (1,0),e2 = (0,1) be the standard orhonormal basis in
UcCR2

Lemma

Let a(s) be a regular curve on X(U) C M parametrized by arc
length and let B be such that X(3) = . Suppose 6(s) be smooth

so that

a'(s) = cosf(s)e; + sin0(s)es.
Then .

m = cosf(s)e; + sinbd(s)ey.




Isothermal coordinates




Isothermal coordinates

Facts about isothermal parametrization, cont.

Let o be a piecewise smooth simple closed curve bounded a region
R in M so that a = X(/3), which bounded a region in U. If « is
positively oriented w.r.t. to the orientation N = e; x ey, then (3 is
positively oriented with respect to the standard orientation in U.




Gauss-Bonnet Theorem (local)

ffR KdA for R inside an isothermal coordinate chart

Consider the following:

@ Let X: U — M be an isothermal local parametrization of an
oriented surface M (i.e. E =G = e*, F=0).

o Let a = afs) = X(u(s), v(s)) (0 <s <), be a simple closed
piecewise smooth curve parametrized by arc length in M so
that S(s) = (u(s), v(s)) is a piecewise smooth curved in U
which bounds a region D in U. Let R = X(D). Assume « is
positively oriented.

@ Let L be the length of B in U and let 7 be the arc length of
as a curve in U C R2. Then §(s) = 8(s(7)), 0 <7 < L.



Gauss-Bonnet Theorem (local)

Lemma

In the above setting, we have:

//R KdA:—/OL(VOf,VO)dT

where Vof = (%, %). Here 7 is the arc length of B as a curve in

U c R? and vy is the unit outward normal of D.

Recall that in the above settings, if ¢ is a function defined on M

e //R PdA = //U oV EG — F2dudv.
Here ¢ = ¢(u, v) = ¢(X(u, v)).



Gauss-Bonnet Theorem (local)

Green's theorem

In order to prove the lemma, we need the following Green's
theorem (divergence theorem):

Theorem

Let Q be a bounded domain if R? and let -y = (1) parametrized
by arc length, 0 < 7 < | be the boundary curve of €, positively
oriented. Assume that ~y is piecewise smooth and connected. Let v
be the unit outward normal of ). Suppose P and @ are two
smooth functions defined on 0, and let w = (P, Q). Then

J(2+29) st = [




Gauss-Bonnet Theorem (local)

@ Note that divw = ‘3—5 + %—‘3. Hence the theorem is equivalent

to say:
/
// divwdudv:/<w,y>d7'.
Q 0

@ The theorem is still true if the boundary consists of finitely
many piecewise smooth closed curves. We have to assume
that all are positively oriented.

@ The theorem is still true in higher dimensions.



Gauss-Bonnet Theorem (local)

Sketch of proof of the Divergence Theorem for domains in
R2

Step 1: Assume the domain D is bounded by the line segment
L:{a<x<b,y =0} and the graph K of a function y = ¢(x)
over L with ¢(x) > 0 for x € (a,b) and y(a) = y(b) = 0. If

X =(0,g(x,y)) is a smooth vector field, then

/didexdy:/ 8—gdxdy
D p Oy

b
- / (g(x. 6(x)) — g(x,0)) dx.

The outward unit normal v of D at the boundari L'is |Oi —ll.



Gauss-Bonnet Theorem (local)

Hence

/L(X,y>ds = —/abg(x, 0)dx

The unit outward normal of D at the boundary K is

(—¢'(x),1 /W and

/K<X,V)ds = /;(X,Wde = /abg(x,qs(x))dx,



Gauss-Bonnet Theorem (local)

Step 2: The theorem is true for a domain bounded by a triangle.

Step 3: The theorem is true for a domain bounded by a polygon.

Step 4: The theorem is true for a domain bounded by a piecewise
smooth curve.



Gauss-Bonnet Theorem (local)

Proof of the lemma.

Recall that o o
K=—e2f| =4+ _Ff
¢ <au2 + av2>
On the other hand,
EG — F?2 = &*.

P OPf
//RKdA_// e (au2 +(’3v2> - dudv
// (au’; ) dudv
:—/ <W,V0>d T.
0

Hence




Gauss-Bonnet Theorem (local)

kg in isothermal coordinates

We want to see what is the boundary integral.
Consider:
o Let X(u,v): U — M be a local isothermal parametrization of
a surface M. That is: the 1st fundamental form satisfies
E=G>0F=0 Let e =E=0G.
o Lete; =X, /| Xyl = e fX,, and e; = e X,.
@ We also assume that e;, e, are positively oriented. That is
the orientation is given by the normal of the surface
N =X, x X, /|X, x X,|. We want to compute the geodesic
curvature of a curve w.r.t. this orientation.



Gauss-Bonnet Theorem (local)

Let « : [0, /] be a smooth regular curve on X(U) with arc length
parametrization. Let 0y be an angle such that

< o/(0),e; >= cosfp. Once we choose 6y, then we can define a
function 6(s) such that it is smooth and (0) = 6y with
(d/(s),e1(s)) = cosO(s) and (/(s),ex(s)) =sinb(s). Hence

o'(s) = ey cosf + ey sind.

Let
n= —e;sinf + eycosb.

Then o/, n are positively oriented.



Gauss-Bonnet Theorem (local)

do du dv
= - —I—/— fui
ds +( ds + ds)



Gauss-Bonnet Theorem (local)

To compute [[ KdA + fol kgds

Now go back to what we consider.

@ Let X: U — M be an isothermal local parametrization of an
oriented surface M (i.e. E =G = €%, F =0).

o Let a = a(s) = X(u(s), v(s)) (0 <s <), be a simple closed
piecewise smooth curve parametrized by arc length in M so
that §(s) = (u(s), v(s)) is a piecewise smooth curved in U
which bounds a region D in U. Let R = X(D).

@ Let L be the length of 5 in U and let 7 be the arc length of 5.
Then 5(s) = B(s(7)), 0 <7 < L.



Gauss-Bonnet Theorem (local)

Assume there exist 0 = sp < 51 < ...,Skr1 =/ so that a is
continuous and smooth in each [s;, si+1]. Then we have smooth
functions € on each [s;, sj;+1] as above.

By the previous lemma, we have

L
// KdA:—/ (Vof,vp)odT
R 0
/
= /(ng V0> %ds
/kds /ds

/k ds—i—z (si+1) — 0(si))-

0 i=0
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k

[ e [ s =3 (0050) - 065

i=0
What is the RHS?



Gauss-Bonnet Theorem (local)

Jordan curve theorem

Theorem (Jordan curve theorem)

Let o be a continuous simple closed curve in R? (or in S?), then o

will separate R? (or S?) into two components (i.e. open connected
sets).




Gauss-Bonnet Theorem (local)

Exterior angles and interior angles

Now let R C M is a bounded domain in M which is bounded by
some piecewise smooth positively oriented simple closed curve
a1,...,0p.

Denote « be one of the «, parametrized by arc length with length
£ Llet0=1ty <ty <--+ < tmy1 =L such that « is smooth on

[ti, ti+1] and « is smooth near a(0) = a(¢). Each a(t;)

(1 <i< m)iscalled a vertex.



Gauss-Bonnet Theorem (local)

The exterior angle 6; at a(t;) is defined as follows. First let

/ ) — . ! L i — . /
o' (ti—) t<1,!,T—>t,- o' (t); o' (ti+) t>1,!,T—>t,- a'(t)

o O/(t,'—) = O/(t,'—l—), then 6; = 0.

e o/(ti—) # £d/(ti+). Then they are linearly independent. We
define 6; to be the oriented angle from «a(t;—) to a(tj+)
between —, w. 0; is positive (negative), if a(t;—), a(tj+) are
positively (negatively) oriented.

e o(ti—) = —d/(ti+), the ; = 7 or —m. The sign is
determined by "approximation’.

The interior angle v; at «(t;) is defined as t; = m — 6);.



Gauss-Bonnet Theorem (local)

Hopf's Umlaufsatz

Theorem (Hopf’s Umlaufsatz, Theorem of Turning Tangents)

Let o : [0, 1] — R? be a piecewise regular, simple closed curve with
a(0) = a(l). Let a(t1),...,a(tk),

0=ty <ty < --<tg<tyr1 =1 be the vertices of a with
exterior angle 0;. Let p; be smooth choice of angles defined in

[ti, tir1] such that the oriented angle from the positive axis to o/(t)
is pi(t) (ie. o = (cospi(t),sinp;(t))) for t € [t;, tir1]. Then

k k

D (piltivn) — i(t) + ) 6 = 2.

i=1 i=0
It is +1 if « is positively oriented and —1 if it is negatively
oriented, with respect to the usual orientation of R?.
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The Gauss-Bonnet Theorem: local version

Theorem

Let X : U — M be an isothermal local parametrization of an
oriented surface M (i.e. E = G = €*f, F =0). Assume that X is
orientation preserving. Let a = a(s) = X(u(s), v(s)), 0 <s </,
be a simple closed curve parametrized by arc length so that

(u(s), v(s)) bounds a region D in U. Let R = X(D). Assume « is
piecewise smooth and positively oriented. Let o(sp), ..., a(sk) be
the vertices of a with exterior angles ¢q, . . . , ok, where
O=sp<s1<:---<sx<skr1 =1 Then

/ k
/kg(s)ds—i—// KdA+> i =2r.
0 R

i=0




Gauss-Bonnet Theorem (local)

Proof.
Since the parametrization preserves angles and orientation, by
Hopf's theorem and the fact that

k

//R KdA + /o' keds = > (0(si+1) — 0(s))-

i=0

the result follows.
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Corollary

Suppose k = 3, i.e. we have a triangle then

/ 3
/kg(s)ds+// KdA =Y 1 —m,
v i i=1

where 1j = ™ — 0; are the interior angles. Hence if each side is a
geodesic, then K > 0 implies the sum of the interior angles is
larger than 7, and K < 0, implies the sum of the interior angles is
less than .
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