Geodesics of surfaces of revolution

Geodesic equations of surfaces of revolution

Consider the surface of revolution given by
X(u,v) = (f(v)cosu, f(v)sinu,g(v))

with f > 0. In the following f’ means -, etc. If there is come
confusion, we will write f,, instead, etc
Consider u! < u,u? & v.

811 = E:( uw Xu) = 2,
812 = 821 :<X ,Xy) =0
g2 = G = (XX} = (F)2+ (g)2
So
M, =0rL,=5r3,=0
{rfl ~RrEy )2,r12 0.1% = pi e
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Geodesic equations of surfaces of revolution

Hence geodesic equations are:

i+ 2y =0
. f'f'/ . 2 f/fNJF ! . 2 .
v (F)2+(g’)? (u) + (f’)2+?g§)2 (V) =0.

Any meridian is a geodesic. A parallel X(u, vy) is a geodesic if and
only if f'(vg) = 0.
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General geodesics

To study the behavior of general geodesics, we begin with the
following lemma:

Let a1(t), a2(t) be smooth functions on (T1, T2) C R such that
a?+a3=1. Foranyty € (T1, T2) and 0y such that

a1(tp) = cos by, ax(tp) = sin by, there exists unique a smooth
function 6(t) with 6(ty) = 6y such that a;(t) = cos6(t) and
ax(t) = sin4(t).
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Proof of the lemma

Proof: Suppose 6 satisfies the condition. Then aj = —6'sin¥,

ay = 0’ cosf. Hence 0/ = a;a) — apa). From this we have
uniqueness. To prove existnce, fix to € (T1, T2) and let 6y be such
that cosfy = a1(0), sinfy = a2(0). Let

t
Q(t) =0y + / (3/231 — allag)dT.
to

Let f = (ay — b1)? + (a2 — b2)?, where by = cosf, by = sin.
Then f =2 — 2alb1 — 232b2.
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Proof of lemma, cont.

Then

1
_Ef/ :a’1b1 + alb'1 + a'2b2 + agbé
:a'lbl — 9/31[)2 + a’2b2 + 9/22b1
:(3/231 — a’lag)(—albg + 32b1) + a/1b1 + a/2b2
= — a2abby + araha1 by + a1ajarby — a3ay by + ay by + abby
= — a2abby — ayala1by — axabapby — a3ay by + ay by + abby

=0

because a3 + a3 = 1 and a1a] + a»a, = 0.
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General geodesics, cont.

Now let a(s) = X(u(s), v(s)) be a geodesic on M parametrized by
arc length. Let e; = X,,/|X,| and e2 = X, /|X,|. Then e, e, are
orthonormal. Let

o = aie; + azesr.

By the lemma there exists smooth function 6(s) such that
a; = sinf, ap = cosf. Note that 0 is the angle between o and the
meridian. That is:

sinf = (o, e1) = fu.



Geodesics of surfaces of revolution

Clairaut’'s Theorem

Proposition (CLAIRAUT’S THEOREM)

r(s)sin0(s) is constant along o, where r(s) is the distance of a(s)
from the z-axis.

Proof.
Denote the 92 by o etc. Since r(s) = f(v(s)),

r=f,v.

Also sinf = (d/,e1) = U'f, so (sinf) = J"f + JV'f,.

(rsin®) =fV'u'f +dJ"f + f,u'V/

iy
=i (u" - fu/v') =0.
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Another proof

Clairaut's Theorem revisited: In this case for the energy functional,

C— g(ﬂ(v)(u)z +(F2 4+ g2)(V)2).

Since geodesics satisfy the E-L equations, and

0
%E =0,
and 9 .
%5 = f<i,
hence we have J
S (Ffi =0

along the geodesic.
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Note that

sinf = (a/,e1) = (Xyir + X, v, ——) = fi.

Xy

So r(s)sinf(s) = f(a(s))sin0(s) = f2i.
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Geodesics of surfaces of revolution, cont.

Let us analyse a geodesic a(s), 0 < s < L < oo, on the surface of
revolution parametrized by arc length. Let us assume that

g(v) is increasing, i.e. g, > 0.

Let r(s) and 6(s) be as in Clairaut’'s Theorem. Let 6y = 6(0). We
may assume that

0<6<73.
By Clairaut’s Theorem,
r(s)sinf(s) = C for some constant C > 0.
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Note that r(s) > C.

Case 1: If 5 =0, then R = 0 and it is a meridian.

Case 2: If § = /2, then r(0) = C. If f,(«(0)) =0, then it is a
geodesic. If f,(«(0)) # 0, then near s = 0 and s # 0, « will stay in
the region with r(s) = f(a(s)) > C.

Case 3: Suppose 0 < 6y < 7/2. Then « is going up initially.
Moreover, near s = 0, r(s) = C/sinf(s) > C. We consider two
cases:
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Case 3(i) There is no parallel above «(0) with radius C. That is all
parallels above «(0) has radius larger than C. Then a will go up
all the way.

Case 3(ii) There is a parallel above «(0) so that the radius is C.
Let ¢ be the first one above (0). Then we have two more
subcases:

(ii)(a) c is a geodesic. Then a will approach to C but never
intersect C.

(ii))(b) c is not a geodesic, then a will touch C and bounces away.
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To summarize, in the above settings, we have:

(i) If C =0, then « is a meridian.

(i) R > 0. Then geodesic will go up for all s, as long as r > C,
i.e. the z coordinate of « is increasing in s. Either o does not
come close to any parallel of radius C, and o will go up for all
s, or a will be close to a parallel ¢ of radius C. Let ¢ be the
first such parallel above o.. Then we have the following cases:

(a) c is a geodesic. Then « will not meet C and « will come
arbitrarily close to C without intersecting C.

(b) c is not a geodesic. Then there is a(sy) € ¢ for some sy and «
will bounce off from C and will turn downward.
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